證明:先證必要性成立.?
∵a+b=1,即b=1-a,?
∴a3+b3+ab-a2-b2?
=a3+(1-a)3+a(1-a)-a2-(1-a)2??
=a3+1-3a+3a2-a3+a-a2-a2-1+2a-a2=0.?
再證充分性成立.?
∵a3+b3+ab-a2-b2=0,?
即(a+b)(a2-ab+b2)-(a2-ab+b2)=0,?
∴(a+b-1)(a2-ab+b2)=0.?
由ab≠0,即a≠0且b≠0,?
∴a2-ab+b2=(a-)2+≠0.?
只有a+b=1,?
綜上可知,當(dāng)ab≠0,a+b=1的充要條件是a3+b3+ab-a2-b2=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com