【題目】設(shè)是定義在上的函數(shù),如果存在點(diǎn),對函數(shù)的圖象上任意點(diǎn),關(guān)于點(diǎn)的對稱點(diǎn)也在函數(shù)的圖象上,則稱函數(shù)關(guān)于點(diǎn)對稱,稱為函數(shù)的一個(gè)對稱點(diǎn),對于定義在上的函數(shù),可以證明點(diǎn)圖象的一個(gè)對稱點(diǎn)的充要條件是,

1求函數(shù)圖象的一個(gè)對稱點(diǎn);

2函數(shù)的圖象是否有對稱點(diǎn)?若存在則求之,否則說明理由;

3函數(shù)的圖象是否有對稱點(diǎn)?若存在則求之,否則說明理由

【答案】1函數(shù)圖象的一個(gè)對稱點(diǎn)為;

2函數(shù)的圖象無對稱點(diǎn)

3函數(shù)的圖象有一個(gè)對稱點(diǎn)

【解析】

試題分析:1設(shè)為函數(shù)圖象的一個(gè)對稱點(diǎn),由題意即對于恒成立,可得函數(shù)圖象的一個(gè)對稱點(diǎn);2假設(shè)是函數(shù)的圖象的一個(gè)對稱點(diǎn),即對于恒成立,因?yàn)?/span>,所以不恒成立,即函數(shù)的圖象無對稱點(diǎn).(3假設(shè)是函數(shù)的圖象的一個(gè)對稱點(diǎn),對于恒成立,所以

解之即可

試題解析:1設(shè)為函數(shù)圖象的一個(gè)對稱點(diǎn),則對于恒成立,即對于恒成立,

故函數(shù)圖象的一個(gè)對稱點(diǎn)為

2假設(shè)是函數(shù)的圖象的一個(gè)對稱點(diǎn),

對于恒成立,

對于恒成立,因?yàn)?/span>,所以不恒成立,即函數(shù)的圖象無對稱點(diǎn)

3假設(shè)是函數(shù)的圖象的一個(gè)對稱點(diǎn),

對于恒成立,

對于恒成立,

所以

故函數(shù)的圖象有一個(gè)對稱點(diǎn)

其實(shí),而函數(shù)是奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,故的圖象關(guān)于對稱

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1設(shè)是函數(shù)的極值點(diǎn),求并討論的單調(diào)性;

2設(shè)是函數(shù)的極值點(diǎn),且恒成立,求的取值范圍其中常數(shù)滿足).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F并且經(jīng)過點(diǎn)A(1,﹣2).

(1)求拋物線C的方程;

(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),求OMN的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?

(2)若次數(shù)在110以上為達(dá)標(biāo),試估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為多少?

(3)通過該統(tǒng)計(jì)圖,可以估計(jì)該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有20名學(xué)生參加某次考試,成績(單位:分)的頻率分布直方圖如圖所示:

(Ⅰ)求頻率分布直方圖中的值;

(Ⅱ)分別求出成績落在中的學(xué)生人數(shù);

(Ⅲ)從成績在的學(xué)生中任選2人,求所選學(xué)生的成績都落在中的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對首次消費(fèi)的顧客,按/次收費(fèi), 并注冊成為會(huì)員, 對會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

消費(fèi)次第






收費(fèi)比例






該公司從注冊的會(huì)員中, 隨機(jī)抽取了位進(jìn)行統(tǒng)計(jì), 得到統(tǒng)計(jì)數(shù)據(jù)如下:

消費(fèi)次第






頻數(shù)






假設(shè)汽車美容一次, 公司成本為, 根據(jù)所給數(shù)據(jù), 解答下列問題:

1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;

2)某會(huì)員僅消費(fèi)兩次, 求這兩次消費(fèi)中, 公司獲得的平均利潤;

3)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率, 設(shè)該公司為一位會(huì)員服務(wù)的平均利潤為, 的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有5個(gè)形狀大小完全相同的球,其中有2個(gè)紅球,3個(gè)白球

1從袋中隨機(jī)取兩個(gè)球,求取出的兩個(gè)球顏色不同的概率;

2從袋中隨機(jī)取一個(gè)球,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,求兩次取出的球中至少有一個(gè)紅球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤達(dá)到最大.已知對這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,經(jīng)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:

資金

每臺(tái)產(chǎn)品所需資金(百元)

月資金供應(yīng)量

(百元)

空調(diào)機(jī)

洗衣機(jī)

成本

30

20

300

勞動(dòng)力(工資)

5

10

110

每臺(tái)產(chǎn)品利潤

6

8

試問:怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)體育測試成績分為四個(gè)等級:優(yōu)、良、中、不及格.某班50名學(xué)生參加測試的結(jié)果如下:

等級

優(yōu)

不及格

人數(shù)

5

19

23

3

1從該班任意抽取1名學(xué)生,求這名學(xué)生的測試成績?yōu)?/span>的概率;

2)測試成績?yōu)?/span>優(yōu)的3名男生記為,,2名女生記為,.現(xiàn)從這5人中任選2人參加學(xué)校的某項(xiàng)體育比賽.

寫出所有等可能的基本事件;

求參賽學(xué)生中恰有1名女生的概率.

查看答案和解析>>

同步練習(xí)冊答案