設(shè)函數(shù)f(x)=p(x-數(shù)學(xué)公式)-2lnx,g(x)=數(shù)學(xué)公式(p是實(shí)數(shù),e為自然對數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

解:(1)∵f’(x)=,要使f(x)為單調(diào)增函數(shù),須f’(x)≥0恒成立,
即px2-2x+p≥0恒成立,即p≥=恒成立,又≤1,
所以當(dāng)p≥1時(shí),f(x)在(0,+∞)為單調(diào)增函數(shù).
要使f(x)為單調(diào)減函數(shù),須f’(x)≤0恒成立,
即px2-2x+0≤0恒成立,即p≤=恒成立,又>0,
所以當(dāng)p≤0時(shí),f(x)在(0,+∞)為單調(diào)減函數(shù).
綜上所述,f(x)在(0,+∞)為單調(diào)函數(shù),p的取值范圍為p≥1或p≤0(4分)

(2)∵f’(x)=p+,∴f’(1)=2(p-1),設(shè)直線l:y=2(p-1)(x-1),
∵l與g(x)圖象相切,
∴y=2(p-1)(x-1)
得(p-1)(x-1)=,即(p-1)x2-(p-1)x-e=0
y=
當(dāng)p=1時(shí),方程無解;當(dāng)p≠1時(shí)由△=(p-1)2-4(p-1)(-e)=0,
得p=1-4e,綜上,p=1-4e(4分)

(3)因g(x)=在[1,e]上為減函數(shù),所以g(x)∈[2,2e]
①當(dāng)p≤0時(shí),由(1)知f(x)在[1,e]上遞減?f(x)max=f(1)=0<2,不合題意
②當(dāng)p≥1時(shí),由(1)知f(x)在[1,e]上遞增,f(1)<2,又g(x)在[1,e]上為減函數(shù),
故只需f(x)max>g(x)min,x∈[1,e],
即:f(e)=p(e-)-2lne>2?p>
③當(dāng)0<p<1時(shí),因x-≥0,x∈[1,e]
所以f(x)=p(x-)-2lnx≤(x-)-2lnx≤e--2lne<2不合題意
綜上,p的取值范圍為(,+∞)(5分)
分析:(1)求導(dǎo)f’(x)=,要使“f(x)為單調(diào)增函數(shù)”,轉(zhuǎn)化為“f’(x)≥0恒成立”,再轉(zhuǎn)化為“p≥=恒成立”,由最值法求解.同理,要使“f(x)為單調(diào)減函數(shù)”,轉(zhuǎn)化為“f’(x)≤0恒成立”,再轉(zhuǎn)化為“p≤=恒成立”,由最值法求解,最后兩個(gè)結(jié)果取并集.
(2)由“函數(shù)f(x)的圖象相切于點(diǎn)(1,0”求得切線l的方程,再由“l(fā)與g(x)圖象相切”得到(p-1)x2-(p-1)x-e=0
由判別式求解即可.
(3)因?yàn)椤霸赱1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立”,要轉(zhuǎn)化為“f(x)max>g(x)min”解決,易知g(x)=在[1,e]上為減函數(shù),所以g(x)∈[2,2e],①當(dāng)p≤0時(shí),f(x)在[1,e]上遞減;②當(dāng)p≥1時(shí),f(x)在[1,e]上遞增;③當(dāng)0<p<1時(shí),兩者作差比較.
點(diǎn)評:本題主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時(shí),導(dǎo)數(shù)大于等于零;當(dāng)函數(shù)為減函數(shù)時(shí),導(dǎo)數(shù)小于等于零,已知單調(diào)性求參數(shù)的范圍往往轉(zhuǎn)化為求相應(yīng)函數(shù)的最值問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(sinx,cosx+sinx),
q
=(2cosx,cosx-sinx),x∈R,設(shè)函數(shù)f(x)=
p
q

(I)求f(
π
3
)
的值及函數(shù)f(x)的最大值;
(II)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實(shí)數(shù),e為自然對數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州三模)設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
.(p是實(shí)數(shù),e是自然對數(shù)的底數(shù))
(1)當(dāng)p=2時(shí),求與函數(shù)y=f(x)的圖象在點(diǎn)A(1,0)處相切的切線方程;
(2)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求p的取值范圍;
(3)若在[1,e]上至少存在一點(diǎn)xo,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濱州一模)設(shè)函數(shù)f(x)=p(x-
1x
)-2lnx,g(x)=x2,
(I)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求實(shí)數(shù)p的值;
(II)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案