設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P點處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.
(1) a=-1,b=3. (2)利用導(dǎo)數(shù)證明。
解析試題分析: (1)f ′(x)=1+2ax+.(1分)
由已知條件得即
解得a=-1,b=3. (4分)
(2)f(x)的定義域為(0,+∞),
由(1)知f(x)=x-x2+3lnx.
設(shè)g(x)=f(x)-(2x-2)=2-x-x2+3lnx,則
g′(x)=-1-2x+=-. (6分)
當0<x<1時,g′(x)>0;當x>1時,g′(x)<0.
所以g(x)在(0,1)單調(diào)遞增,在(1,+∞)單調(diào)遞減.(8分)
而g(1)=0,故當x>0時,g(x)≤0,即f(x)≤2x-2. (10分)
考點:本題主要考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,不等式組的證明。
點評:中檔題,導(dǎo)數(shù)的應(yīng)用是高考必考內(nèi)容,思路往往比較明確根據(jù)導(dǎo)數(shù)值的正負,確定函數(shù)的單調(diào)性。定義不懂事的證明問題,往往通過構(gòu)造函數(shù),轉(zhuǎn)化成求函數(shù)的最值,使問題得解。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若關(guān)于的方程有3個不同實根,求實數(shù)的取值范圍;
(3)已知當恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當x∈(0,+∞)時,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)若當x∈[-2,2]時,不等式f(x)>m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在和處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
理科已知函數(shù),當時,函數(shù)取得極大值.
(Ⅰ)求實數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個結(jié)論證明:若,函數(shù),則對任意,都有;(Ⅲ)已知正數(shù)滿足求證:當,時,對任意大于,且互不相等的實數(shù),都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),。
(1)若對任意的實數(shù)a,函數(shù)與的圖象在x = x0處的切線斜率總想等,求x0的值;
(2)若a > 0,對任意x > 0不等式恒成立,求實數(shù)a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com