已知函數(shù) 
(I)當(dāng)時(shí),求在[1,]上的取值范圍。
(II)若在[1,]上為增函數(shù),求a的取值范圍。
(1)取值范圍為[     (2)

試題分析:解:(1)時(shí)  

當(dāng)時(shí)    在[1,2)上
時(shí)    在[2,)上
時(shí) 有極小值也就是最小值

在[1,]上最大值為
取值范圍為[
(2)
  
設(shè)要使在[1,]上   只須
 在[1,]上恒成立
的對稱軸為且開口向下
故只須
由此得出取值范圍為 
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性,以及極值和最值的運(yùn)用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求在圖象與軸交點(diǎn)處的切線方程;
(2)若在(1,2)上為單調(diào)函數(shù),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,與函數(shù)y定義域相同的函數(shù)為(     )
A.yB.yC.yxexD.y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于函數(shù) 
(1)探索函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù),使函數(shù)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)上為增函數(shù),則的取值范圍是           (用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),,則
A.為偶函數(shù),且在上單調(diào)遞減
B.為偶函數(shù),且在上單調(diào)遞增
C.為奇函數(shù),且在上單調(diào)遞增
D.為奇函數(shù),且在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)時(shí),函數(shù)的單調(diào)性
A.是單調(diào)增函數(shù)
B.是單調(diào)減函數(shù)
C.在上單調(diào)遞減,在上單調(diào)遞增
D.在上單調(diào)遞增,在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知.
(1)求極值;
(2)

查看答案和解析>>

同步練習(xí)冊答案