【題目】在平面直角坐標(biāo)系中,拋物線的準(zhǔn)線為,其焦點為F,點B是拋物線C上橫坐標(biāo)為的一點,若點B到的距離等于

(1)求拋物線C的方程,

(2)設(shè)A是拋物線C上異于頂點的一點,直線AO交直線于點M,拋物線C在點A處的切線m交直線于點N,求證:以點N為圓心,以為半徑的圓經(jīng)過軸上的兩個定點.

【答案】(1);(2)定點,

【解析】

(1) 由題意,得,則△BOF為等腰三角形,求出線段OF的中點的橫坐標(biāo)即可得到拋物線C的方程;

(2) 設(shè)切線m的方程為:,聯(lián)立方程,借助韋達(dá)定理可得,再求出,表示以為半徑的圓的方程即可得到兩個定點.

(1)由題意,得,則△BOF為等腰三角形,

因為點B的橫坐標(biāo)為,所以線段OF的中點的橫坐標(biāo)為,

從而點F的橫坐標(biāo)為1,即,所以p=2,

故所求拋物線C的方程為

(2)證明:設(shè)切線m的方程為:,由

*

由題意知,即

所以方程(*)的根為 ,從而

直線OA的方程為

,得,由,得,

所以以點N為圓心,以為半徑的圓的方程為

,得,解得,

所以圓N經(jīng)過x軸上的兩個定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.

1)求證:平面平面;

2)若,,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形,,,底面,,,的中點.

1)求證:;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓錐(其中為頂點,為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家統(tǒng)計局統(tǒng)計了我國近10年(2009年2018年)的GDP(GDP是國民經(jīng)濟核算的核心指標(biāo),也是衡量一個國家或地區(qū)總體經(jīng)濟狀況的重要指標(biāo))增速的情況,并繪制了下面的折線統(tǒng)計圖.

根據(jù)該折線統(tǒng)計圖,下面說法錯誤的是

A. 這10年中有3年的GDP增速在9.00%以上

B. 從2010年開始GDP的增速逐年下滑

C. 這10年GDP仍保持6.5%以上的中高速增長

D. 2013年—2018年GDP的增速相對于2009年—2012年,波動性較小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點).

(1)試求拋物線的方程;

(2)已知點兩點在拋物線上,是以點為直角頂點的直角三角形.

①求證:直線恒過定點;

②過點作直線的垂線交于點,試求點的軌跡方程,并說明其軌跡是何種曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(

A.向左平移個單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變

B.向左平移個單位長度,縱坐標(biāo)伸長到原來的3倍橫坐標(biāo)不變

C.向右平移個單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變

D.向右平移個單位長度,縱坐標(biāo)伸長到原來的3倍,橫坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨立,且每個零件的人工檢驗費為2.

1)設(shè)1箱零件人工檢驗總費用為元,求的分布列;

2)除了人工檢驗方法外還有機器檢驗方法,機器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費為1.6.現(xiàn)有1000箱零件需要檢驗,以檢驗總費用的數(shù)學(xué)期望為依據(jù),在人工檢驗與機器檢驗中,應(yīng)該選擇哪一個?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:上任意一點到兩個焦點的距離和為4,且離心率為

1)求橢圓的方程.

2)過作互相垂直的兩條直線分別與橢圓交于,,設(shè)中點為,中點為,試探究直線是否過定點?若是,求出該定點;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案