已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是( 。
分析:由直線的一般式方程與直線的平行關系,設出直線l1的方程為3x+4y+m=0,再由直線l1與圓相切,得到圓心到直線的距離等于圓的半徑,利用點到直線的距離公式列出關于m的方程,求出方程的解得到m的值,即可確定出直線l1的方程.
解答:解:∵直線l1與直線l2:3x+4y-6=0平行,
∴設直線l1為3x+4y+m=0,
將圓的方程化為x2+(y+1)2=1,得到圓心坐標為(0,-1),半徑r=1,
又直線l1與圓x2+y2+2y=0相切,
∴圓心到3x+4y+m=0的距離d=r,即
|m-4|
5
=1,
解得:m=9或m=-1,
則直線l1的方程為3x+4y-1=0或3x+4y+9=0.
故選D
點評:此題考查了直線與圓的位置關系,以及直線的一般式方程與直線的平行關系,涉及的知識有:圓的標準方程,以及點到直線的距離公式,當直線與圓相切時,圓心到直線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•長春一模)已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是
3x+4y-1=0或3x+4y+9=0
3x+4y-1=0或3x+4y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1與圓x2+y2+2y=0相切,與直線l2:3x+4y-6=0平行且距離最大,則直線l1的方程是
3x+4y+9=0
3x+4y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省紹興一中高二(上)期中數(shù)學試卷(解析版) 題型:選擇題

已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是( )
A.3x+4y-1=0
B.3x+4y+1=0或3x+4y-9=0
C.3x+4y+9=0
D.3x+4y-1=0或3x+4y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省珠海市高三(上)摸底數(shù)學試卷(文科)(解析版) 題型:選擇題

已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是( )
A.3x+4y-1=0
B.3x+4y+1=0或3x+4y-9=0
C.3x+4y+9=0
D.3x+4y-1=0或3x+4y+9=0

查看答案和解析>>

同步練習冊答案