根據(jù)三個點(3,10),(7,20),(11,24)的坐標數(shù)據(jù),求得的回歸直線方程是( 。
A.
y
=-5.75x+1.75
B.
y
=5.75x-1.75
C.
y
=1.75x+5.75
D.
y
=-1.75x+5.75
根據(jù)點(3,10),(7,20),(11,24)的坐標可得
y隨x的增大,呈增大的趨勢,故x,y之間應該是正相關(guān)的關(guān)系
故回歸系數(shù)
?
b
為正值,故可排除A,D兩個答案
又∵
.
x
=7,
.
y
=18,滿足
?
y
=1.75x+5.75
故選C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某種產(chǎn)品表面進行腐蝕性試驗,得到腐蝕深度與腐蝕時間之間對應的一組數(shù)據(jù):
時間
深度
5
6
10
10
15
10
20
13
30
16
40
17
50
19
60
23
70
25
90
29
120
46
(1)試求腐蝕深度對時間的回歸直線方程;
(2)預測腐蝕時間為80 s時產(chǎn)品腐蝕的深度大約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:

(Ⅰ)估計該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;
(Ⅱ)能否有99℅的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。
附:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某超市在一段時間內(nèi)的某種商品的價格x(元)與銷售量y(kg)之間的一組數(shù)據(jù)如下表所示:
價格x(元)11.411.611.812.012.2
銷售量y(kg)112110107105103
(Ⅰ)畫出散點圖;
(Ⅱ)求出y對x的回歸的直線方程;
(Ⅲ)當價格定為11.9元時,預測銷售量大約是多少?
b
=
n
i=1
(x1-
.
x
)(y1-
.
y
)
n
i=1
(x1-
.
x
)
2
=
n
i=1
x1y1-n
.
x
.
y
n
i=1
x
21
-n
.
x
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設有一個回歸方程
y
=3-2.5x
,則變量x增加一個單位時( 。
A.y平均增加2.5個單位B.y平均增加3個單位
C.y平均減少2.5個單位D.y平均減少3個單位

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額如下表:
商店名稱ABCDE
銷售額x/萬元35679
利潤額y/萬元23345
(1)畫出銷售額和利潤額的散點圖.
(2)若銷售額和利潤額具有相關(guān)關(guān)系,試計算利潤額y對銷售額x的回歸直線方程.
(3)估計要達到1萬元的利潤額,銷售額大約為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩個變量x與y之間具有線性相關(guān)關(guān)系,5次試驗的觀測數(shù)據(jù)如下:
x100120140160180
y4554627592
那么變量y關(guān)于x的回歸直線方程只可能是( 。
A.
y
=0.575x-14.9
B.
y
=0.572x-13.9
C.
y
=0.575x-12.9
D.
y
=0.572x-14.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某種產(chǎn)品的廣告費用支出X與銷售額之間有如下的對應數(shù)據(jù):
x24568
y3040605070
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為10銷售收入y的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某個體服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表:
x3456789
y66697481899091
(1)求純利y與每天銷售件數(shù)x之間的回歸方程;
(2)若該周內(nèi)某天銷售服裝13件,估計可獲純利多少元?

查看答案和解析>>

同步練習冊答案