(12分)已知函數(shù) :
(1)寫出此函數(shù)的定義域和值域;
(2)證明函數(shù)在為單調(diào)遞減函數(shù);
(3)試判斷并證明函數(shù)的奇偶性.

(1)(2)見解析(3)奇函數(shù)

解析試題分析:(1)顯然定義域為.                                    ……3分
因為 ∴值域為                                     ……6分
(2)設(shè),
則:
 ∴,,
,
∴函數(shù)在為單調(diào)遞減函數(shù).                                          ……9分
(3)顯然函數(shù)定義域關(guān)于原點對稱,
設(shè),,
∴此函數(shù)為奇函數(shù).                                                       ……12分
考點:本小題主要考查函數(shù)定義域、值域的求法,用定義證明單調(diào)性以及函數(shù)奇偶性的判斷.
點評:用定義證明單調(diào)性時一定要把結(jié)果化到最簡,判斷函數(shù)奇偶性時,要先看函數(shù)的定義域是否關(guān)于原點對稱.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知-1≤x≤2,求函數(shù)f(x)=3+2·3x+1-9x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)
(1)是否存在實數(shù)使函數(shù)f(x)為奇函數(shù)?證明你的結(jié)論;
(2)用單調(diào)性定義證明:不論取任何實數(shù),函數(shù)f(x)在其定義域上都是增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)若是定義在上的增函數(shù),且對一切,滿足.
(1)求的值;
(2)若,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣的含藥量(毫克)與時間(小時)成正比.藥物釋放完畢后,的函數(shù)關(guān)系式為為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:

(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數(shù)關(guān)系式;(2)據(jù)測定,當空氣中每立方米空氣的含藥量降到0.25毫克以下時,學(xué)生方可進教室,那從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到進教室?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù)
(1)若函數(shù)上為增函數(shù),求實數(shù)的取值范圍
(2)當時,求上的最大值和最小值
(3)求證:對任意大于1的正整數(shù),恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)求函數(shù)的值域;
(2)若時,函數(shù)的最小值為,求的值和函數(shù) 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)
(1)試證明上為增函數(shù);
(2)當時,求函數(shù)的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的減函數(shù),且,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案