【題目】(題文)在平面直角坐標(biāo)系中,橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng)

(1)求橢圓的方程;

(2)記橢圓的左右頂點(diǎn),分別過(guò)軸的垂線(xiàn)交直線(xiàn)于點(diǎn), 橢圓上位于軸上方的動(dòng)點(diǎn),直線(xiàn)分別交直線(xiàn)于點(diǎn),

(i)當(dāng)直線(xiàn)的斜率為2時(shí),求的面積;

(ii)求的最小值

【答案】(1);(2)

【解析】

(1)直接利用已知求出ab即得橢圓的方程.(2) (i)先求出點(diǎn)E,F(xiàn)的坐標(biāo),再求|EF|,再求的面積. (ii)先分別求DE,CF,再求再利用基本不等式求的最小值

(1)由題得,所以橢圓的方程為

(2)(1),,

設(shè),則,直線(xiàn)的方程為

,得,

直線(xiàn)的方程為,令,得,

(i)當(dāng)直線(xiàn)的斜率為時(shí),有,消去并整理得,

解得(舍),

所以的面積

(ii),,

所以

所以DE+CF.

所以對(duì)任意的動(dòng)點(diǎn),的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系中,函數(shù)y=ax+ay=ax的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,直線(xiàn)l:y=x+2與以原點(diǎn)為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的左頂點(diǎn)A作直線(xiàn)m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,求直線(xiàn)m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分別為AC,BC的中點(diǎn).
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)上的單調(diào)減函數(shù),已知,,且在定義域內(nèi)恒成立,則實(shí)數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是 ( )
A.當(dāng)x>0且x≠1時(shí),
B.當(dāng)x>0時(shí),
C.當(dāng)x≥2時(shí),的最小值為2
D.當(dāng)0<x≤2時(shí),無(wú)最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對(duì)角線(xiàn)MN過(guò)點(diǎn)C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面積大于9平方米,則DN的長(zhǎng)應(yīng)在什么范圍內(nèi)?

(2)當(dāng)DN的長(zhǎng)度為多少時(shí),矩形花壇AMPN的面積最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),則滿(mǎn)足f(f(a))=2f(a)a的取值范圍是(  )

A. B. [0,1]

C. D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn):,已知過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為: (為參數(shù)),直線(xiàn)與曲線(xiàn)分別交于兩點(diǎn).

(1)寫(xiě)出曲線(xiàn)和直線(xiàn)的普通方程;

(2)若,,成等比數(shù)列,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案