【題目】【2018屆西藏拉薩市高三第一次模擬考試(期末)】如圖,四棱錐底面為等腰梯形, 且,點為中點.
(1)證明: 平面;
(2)若平面, ,直線與平面所成角的正切值為,求四棱錐的體積.
【答案】(1)見解析;(2).
【解析】試題分析:(1)證明線面平行可利用線面平行的判定定理,利用三角形的中位線定理可以得出線線平行,進(jìn)而得出線面平行;(2)根據(jù)底面ABCD為等腰梯形,作AG垂直BC,垂足為G,求出BG和AG,得出AB,便可求出底面的面積,根據(jù)PA與平面ABCD垂直,則為直線直線與平面所成角,利用其正切值求出PA,再根據(jù)錐體體積公式求出體積 .
試題解析:
(1)取中點,連接、.
由于為中位線,所以,
又平面, 平面,所以平面.
由于且,
則 ,所以四邊形為平行四邊形,所以,
因為平面, 面,所以平面.
因為平面, 平面, , , 平面,
所以平面平面.
又平面,所以平面.
解:(2)作于點,則.
在中, , ,則, .
由平面知,直線與平面所成角為,故,
即在中,有,則.
所以,四棱錐的體積 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,求證:函數(shù)有兩個不相等的零點, ,且.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)討論函數(shù)單調(diào)區(qū)間即解導(dǎo)數(shù)大于零求得增區(qū)間,導(dǎo)數(shù)小于零求得減區(qū)間(2)函數(shù)有兩個不同的零點,先分析函數(shù)單調(diào)性得零點所在的區(qū)間, 在上單調(diào)遞增,在上單調(diào)遞減.∵, , ,∴函數(shù)有兩個不同的零點,且一個在內(nèi),另一個在內(nèi).
不妨設(shè), ,要證,即證, 在上是增函數(shù),故,且,即證. 由,得 ,
令 , ,得在上單調(diào)遞減,∴,且∴, ,∴,即∴,故得證
解析:(1)當(dāng)時, ,得,
令,得或.
當(dāng)時, , ,所以,故在上單調(diào)遞減;
當(dāng)時, , ,所以,故在上單調(diào)遞增;
當(dāng)時, , ,所以,故在上單調(diào)遞減;
所以在, 上單調(diào)遞減,在上單調(diào)遞增.
(2)證明:由題意得,其中,
由得,由得,
所以在上單調(diào)遞增,在上單調(diào)遞減.
∵, , ,
∴函數(shù)有兩個不同的零點,且一個在內(nèi),另一個在內(nèi).
不妨設(shè), ,
要證,即證,
因為,且在上是增函數(shù),
所以,且,即證.
由,得 ,
令 , ,
則 .
∵,∴, ,
∴時, ,即在上單調(diào)遞減,
∴,且∴, ,
∴,即∴,故得證.
【題型】解答題
【結(jié)束】
22
【題目】已知曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,設(shè)直線的極坐標(biāo)方程為.
(1)求曲線和直線的普通方程;
(2)設(shè)為曲線上任意一點,求點到直線的距離的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通6座以下私家車投保交強(qiáng)險第一年的費用(基準(zhǔn)保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機(jī)制,且保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強(qiáng)險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費高于基本保費的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級有學(xué)生750人,其中男生450人,女生300人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取兩人,求兩人性別相同的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,試判斷能否在犯錯誤的概率不超過0.1的前提下認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通6座以下私家車投保交強(qiáng)險第一年的費用(基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機(jī)制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強(qiáng)險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生責(zé)任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)購為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費高于基本保費的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個四棱錐的三視圖如圖所示,關(guān)于這個四棱錐,下列說法正確的是( )
A. 最長的棱長為
B. 該四棱錐的體積為
C. 側(cè)面四個三角形都是直角三角形
D. 側(cè)面三角形中有且僅有一個等腰三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃.下面敘述不正確的是 ( )
A. 各月的平均最低氣溫都在0℃以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于20℃的月份有5個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)m=5時,求f(x)>0的解集;
(2)若關(guān)于的不等式f(x)≥2的解集是R,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x與y之間的幾組數(shù)據(jù)如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
假設(shè)根據(jù)上表數(shù)據(jù)所得的線性回歸方程為=x+.若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是( )
A. >b′,>a′ B. >b′,<a′
C. <b′,>a′ D. <b′,<a′
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com