【題目】如圖,底面是邊長為2且的菱形,平面,,且,.
(1)求證:平面平面;
(2)點在線段上,且三棱錐的體積是三棱錐的體積的兩倍,求二面角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓C:的離心率是,拋物線E:的焦點F是C的一個頂點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動點,且位于第一象限,E在點P處的切線與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線與y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右頂點分別為,,點是橢圓上異于、的任意一點,設(shè)直線,的斜率分別為、,且,橢圓的焦距長為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點的直線交橢圓于、兩點,分別記,的面積為、,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,梯形中,,,,為的中點,將沿翻折,構(gòu)成一個四棱錐,如圖2.
(1)求證:異面直線與垂直;
(2)求直線與平面所成角的大;
(3)若三棱錐的體積為,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中記載了這樣的一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還”,其大意為:有一個人走了378里路,第一天健步行走,從第二天起其因腳痛每天走的路程為前一天的一半,走了6天后到達了目的地,問此人第三天走的路程里數(shù)為( )
A.192B.48C.24D.88
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的直角坐標(biāo)方程;
(2)設(shè)點的坐標(biāo)為,若點是曲線截直線所得線段的中點,求的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com