【題目】為了了解市民對開設(shè)傳統(tǒng)文化課的態(tài)度,教育機構(gòu)隨機抽取了位市民進行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民人中持支持態(tài)度的為.

1)完成列聯(lián)表,并判斷是否有的把握認為性別與支持與否有關(guān)?

支持

不支持

合計

男性

女性

合計

2)為了進一步征求對開展傳統(tǒng)文化的意見和建議,從抽取的位市民中對不支持的按照分層抽樣的方法抽取位市民,并從抽取的人中再隨機選取人進行座談,求選取的人恰好為女的概率.

附:

【答案】1)填表見解析;有的把握認為性別與支持與否有關(guān)(2

【解析】

1)根據(jù)分層抽樣原理計算并填寫列聯(lián)表,求出觀測值,對照臨界值得出結(jié)論;

2)用列舉法求出基本事件數(shù),計算所求的概率值.

解:(1)抽取的男性市民為人,持支持態(tài)度的為人,

男性公民中持支持態(tài)度的為人,列出列聯(lián)表如下:

支持

不支持

合計

男性

女性

合計

所以:,

所以在犯錯誤的概率不超過的前提下,可以認為性別與支持與否有關(guān).

2)抽取的人中抽到的男性的人數(shù)為

女性的人數(shù)為.

記被抽取名男性市民為名女性市民為

人中抽取的人的所有抽法有,共有種,

恰有名女性的抽法有,共有種,

由于每人被抽到是等可能的,

所以由古典概型得

故選取的人恰好女的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,為棱的中點,.

(1)證明:平面;

(2)設(shè)二面角的正切值為,,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A(0,3),直線ly2x4,設(shè)圓C的半徑為1,圓心在l上.若圓C上存在點M,使MA2MO,則圓心C的橫坐標(biāo)a的取值范圍是(

A.B.[0,1]

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市抽查了100天該超市的日純利潤數(shù)據(jù),并將日純利潤數(shù)據(jù)分成以下幾組(單位:萬元):,,,,統(tǒng)計結(jié)果如下表所示:

組別

頻數(shù)

5

20

30

30

10

5

以上述樣本分布的頻率估計總體分布的概率,解決下列問題:

1)從該大型超市近幾年的銷售記錄中抽出5天,求其中日純利潤在區(qū)間內(nèi)的天數(shù)不少于2的概率;

2)該超市經(jīng)理由頻數(shù)分布表可以認為,該大型超市每天的純利潤服從正態(tài)分布,其中,近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點值).

①試利用該正態(tài)分布,估計該大型超市1000天內(nèi)日純利潤在區(qū)間內(nèi)的天數(shù)(精確到個位);

②該大型超市負責(zé)人根據(jù)每日的純利潤給超市員工制定了兩種不同的獎勵方案:

方案一:直接發(fā)放獎金,日純利潤低于時每名員工發(fā)放獎金70元,日純利潤不低于時每名員工發(fā)放獎金90元;

方案二:利用抽獎的方式獲得獎金,其中日純利潤不低于時每位員工均有兩次抽獎機會,日純利潤低于時每位員工只有一次抽獎機會;每次抽獎的獎金及對應(yīng)的概率分別為

金額

50

100

概率

小張恰好為該大型超市的一名員工,則從數(shù)學(xué)期望的角度看,小張選擇哪種獎勵方案更有利?

參考數(shù)據(jù):若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)為了打贏脫貧攻堅戰(zhàn),決定盤活貧困村的各項經(jīng)濟發(fā)展要素,實施了產(chǎn)業(yè)、創(chuàng)業(yè)、就業(yè)“三業(yè)并舉”工程.在實施過程中,引導(dǎo)某貧困村農(nóng)戶因地制宜開展種植某經(jīng)濟作物.該類經(jīng)濟作物的質(zhì)量以其質(zhì)量指標(biāo)值來衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為,其質(zhì)量指標(biāo)的等級劃分如下表1

1

質(zhì)量指標(biāo)值

產(chǎn)品等級

優(yōu)秀品

良好品

合格品

不合格品

為了解該類經(jīng)濟作物在當(dāng)?shù)氐姆N植效益,當(dāng)?shù)匾N了甲、乙兩個品種.并隨機抽取了甲、乙兩個品種的各件產(chǎn)品,測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面產(chǎn)品質(zhì)量指標(biāo)值頻率分布直方圖(圖1和圖2.

1)若將頻率視為概率,從乙品種產(chǎn)品中有放回地隨機抽取件,記“抽出乙品種產(chǎn)品中至少件良好品或以上”為事件,求事件發(fā)生的概率(結(jié)果保留小數(shù)點后)(參考數(shù)值:,)

2)若甲、乙兩個品種的銷售利潤率與質(zhì)量指標(biāo)值滿足表2

2

質(zhì)量指標(biāo)值

銷售利潤率

其中,試分析,從長期來看,種植甲、乙哪個品種的平均利潤率較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點為極點, 軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.已知直線 .

(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(Ⅱ)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

[選修 4-5]不等式選講

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a為常數(shù))有兩個極值點.

(1)求實數(shù)a的取值范圍;

(2)設(shè)f(x)的兩個極值點分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個產(chǎn)品),已知其中有且只有一袋次品(10個產(chǎn)品均為次品)如果將5袋產(chǎn)品以15編號,第袋取出個產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號是2,此時的重量_________;若次品所在的袋子的編號是,此時的重量_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請你設(shè)計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、FAB上是被切去的等腰直角三角形斜邊的兩個端點,設(shè)AE=FB=xcm2

1)若廣告商要求包裝盒側(cè)面積Scm)最大,試問x應(yīng)取何值?

2)若廣告商要求包裝盒容積Vcm)最大,試問x應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值。

查看答案和解析>>

同步練習(xí)冊答案