【題目】定義:對于任意,滿足條件M是與n無關(guān)的常數(shù))的無窮數(shù)列稱為M數(shù)列.

(1)若等差數(shù)列的前項(xiàng)和為,且,判斷數(shù)列是否是M數(shù)列,并說明理由;

(2)若各項(xiàng)為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,證明:數(shù)列M數(shù)列,并指出M的取值范圍;

(3)設(shè)數(shù)列,問數(shù)列是否是M數(shù)列?請說明理由.

【答案】(1)數(shù)列不是M數(shù)列,證明見解析;(2)數(shù)列M數(shù)列,證明見解析,M的取值范圍為;(3)當(dāng)時(shí),數(shù)列M數(shù)列.

【解析】

(1)由等差數(shù)列的性質(zhì)求等差數(shù)列的的公差,然后借助M數(shù)列的條件即可判斷數(shù)列是否是M數(shù)列;

(2)由等比數(shù)列的性質(zhì)求等比數(shù)列的公比,求前項(xiàng)和,然后借助M數(shù)列的條件判斷,,即可得出結(jié)論數(shù)列M數(shù)列,并可得出M的取值范圍;

(3)先假設(shè)數(shù)列M數(shù)列,然后由滿足M數(shù)列的條件, 恒成立,去絕對值討論滿足條件的的取值范圍,最后得出答案.

(1) 數(shù)列不是M數(shù)列,證明如下:

設(shè)等差數(shù)列的公差為,則由等差數(shù)列的性質(zhì)可得:,得,所以,則等差數(shù)列是遞增等差數(shù)列,恒有,即得數(shù)列無最大值,不滿足,故數(shù)列不是M數(shù)列;

(2) 設(shè)等比數(shù)列的公比為,由題意可得,所以由,

解得,則,所以,,

所以,即,滿足,

,且,滿足,即滿足M數(shù)列的條件,故數(shù)列M數(shù)列,且M,所以M的取值范圍為.

(3)若數(shù)列M數(shù)列,則滿足,由

可得:, 恒成立,

當(dāng)時(shí),可得

,由恒成立,可得:

,則由,可得

,則由,可得();

,則由,可得(),

所以當(dāng)時(shí),由可得,

當(dāng)時(shí),由,可得恒成立,

所以當(dāng)時(shí),, 恒成立,

又因?yàn)榇藭r(shí)恒成立,

綜上可得:當(dāng)時(shí),數(shù)列滿足M數(shù)列的性質(zhì)要求,

所以當(dāng)時(shí),數(shù)列M數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次數(shù)學(xué)考試中,從甲、乙兩個(gè)班各抽取10名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)分析,兩個(gè)班樣本成績的莖葉圖如圖所示.

1)用樣本估計(jì)總體,若根據(jù)莖葉圖計(jì)算得甲乙兩個(gè)班級的平均分相同,求的值;

2)從甲班的樣本不低于90分的成績中任取2名學(xué)生的成績,求這2名學(xué)生的成績不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,,,,平面截長方體得到一個(gè)矩形,且,

1)求截面把該長方體分成的兩部分體積之比;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,、為橢圓的左、右焦點(diǎn),為橢圓上一點(diǎn),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線,過點(diǎn)的直線交橢圓于、兩點(diǎn),線段的垂直平分線分別交直線、直線兩點(diǎn),當(dāng)最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是關(guān)于的方程組的解.

1)求證:;

2)設(shè)分別為三邊長,試判斷的形狀,并說明理由;

3)設(shè)為不全相等的實(shí)數(shù),試判斷 條件,并證明.①充分非必要;②必要非充分;③充分且必要;④非充分非必要.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),它的導(dǎo)函數(shù)為.

(1)當(dāng)時(shí),求的零點(diǎn);

(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是中國傳統(tǒng)節(jié)日之一節(jié)日期間,各大商場各種品牌的粽子戰(zhàn)便悄然打響.某記者走訪市場發(fā)現(xiàn),各大商場粽子種類繁多,價(jià)格不一根據(jù)數(shù)據(jù)統(tǒng)計(jì)分析,得到了某商場不同種類的粽子銷售價(jià)格(單位:元/千克)的頻數(shù)分布表,如表一所示.

表一:

價(jià)格/(元/千克)

[10,15

[15,20

[2025

[25,30

[30,35

種類數(shù)

4

12

16

6

2

在調(diào)查中,記者還發(fā)現(xiàn),各大品牌在餡料方面還做足了功課,滿足了市民多樣化的需求除了蜜棗、豆沙等傳統(tǒng)餡料粽,很多品牌還推出了鮮肉、巧克力、海鮮等特色餡料粽在該商場內(nèi),記者隨機(jī)對100名顧客的年齡和粽子口味偏好進(jìn)行了調(diào)查,結(jié)果如表二.

表二:

喜歡傳統(tǒng)餡料粽

喜歡特色餡料粽

總計(jì)

40歲以下

30

15

45

40歲及以上

50

5

55

總計(jì)

80

20

100

1)根據(jù)表一估計(jì)該商場粽子的平均銷售價(jià)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)根據(jù)表二信息能否有95%的把握認(rèn)為顧客的粽子口味偏好與年齡有關(guān)?

參考公式和數(shù)據(jù):(其中為樣本容量)

PK2k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且橢圓的一個(gè)頂點(diǎn)的坐標(biāo)為.過橢圓的右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),不同于點(diǎn)),直線與直線交于點(diǎn).連接,過點(diǎn)的垂線與直線交于點(diǎn)

(1)求橢圓的方程,并求點(diǎn)的坐標(biāo);

(2)求證:,,三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)整數(shù)集合,其中 ,且對于任意,若,則

1)請寫出一個(gè)滿足條件的集合;

2)證明:任意;

3)若,求滿足條件的集合的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案