【題目】已知實(shí)數(shù)x,y滿足 ,若目標(biāo)函數(shù)z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,則實(shí)數(shù)m的取值范圍是( )
A.[﹣1,2]
B.[﹣2,1]
C.[2,3]
D.[﹣1,3]
【答案】A
【解析】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
由目標(biāo)函數(shù)z=﹣mx+y得y=mx+z,
則直線的截距最大,z最大,直線的截距最小,z最小.
∵目標(biāo)函數(shù)z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,
∴當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)(2,10)時(shí),取得最大,
當(dāng)經(jīng)過(guò)點(diǎn)(2,﹣2)時(shí),取得最小值,
∴目標(biāo)函數(shù)z=﹣mx+y的目標(biāo)函數(shù)的斜率m滿足比x+y=0的斜率大,比2x﹣y+6=0的斜率小,
即﹣1≤m≤2,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為( )
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)在R上可導(dǎo)且滿足不等式xf′(x)+f(x)>0恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是( )
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x﹣1),g(x)=loga(6﹣2x)(a>0且a≠1).
(1)求函數(shù)φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 ,斜率為 的動(dòng)直線l與橢圓C交于不同的兩點(diǎn)A,B.
(1)設(shè)M為弦AB的中點(diǎn),求動(dòng)點(diǎn)M的軌跡方程;
(2)設(shè)F1 , F2為橢圓C在左、右焦點(diǎn),P是橢圓在第一象限上一點(diǎn),滿足 ,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC= AA1=1,D是棱AA1上的點(diǎn),DC1⊥BD
(Ⅰ)求證:D為AA1中點(diǎn);
(Ⅱ)求直線BC1與平面BDC所成角正弦值大;
(Ⅲ)在△ABC邊界及內(nèi)部是否存在點(diǎn)M,使得B1M⊥面BDC,存在,說(shuō)明M位置,不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=ksin(kx+φ)( )與函數(shù)y=kx﹣k2+6的部分圖象如圖所示,則函數(shù)f(x)=sin(kx﹣φ)+cos(kx﹣φ)圖象的一條對(duì)稱軸的方程可以為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某沿海四個(gè)城市A,B,C,D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30 nmile,AD=70 nmile,D位于A的北偏東75°方向.現(xiàn)在有一艘輪船從A出發(fā)向直線航行,一段時(shí)間到達(dá)D后,輪船收到指令改向城市C直線航行,收到指令時(shí)城市C對(duì)于輪船的方位角是南偏西θ度,則sinθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax(a>0),設(shè) .
(1)判斷函數(shù)h(x)=f(x)﹣g(x)零點(diǎn)的個(gè)數(shù),并給出證明;
(2)首項(xiàng)為m的數(shù)列{an}滿足:①an+1+an≠ ;②f(an+1)=g(an).其中0<m< .求證:對(duì)于任意的i,j∈N* , 均有ai﹣aj< ﹣m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com