已知在等比數(shù)列中,,且是和的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,求的前項和.
(Ⅰ);(Ⅱ).
【解析】
試題分析:(Ⅰ)設(shè)公比是,依據(jù)等比數(shù)列的通項公式表示出和,再由已知條件“是和的等差中項”,結(jié)合等差中項的性質(zhì)得到,解出,代入等比數(shù)列的通項公式;(Ⅱ)先由(Ⅰ)中解得的,求出數(shù)列的通項公式:,觀察可知它可以分為一個等差數(shù)列和一個等比數(shù)列,結(jié)合等差數(shù)列和等比數(shù)列的前項和公式求的前項和.
試題解析:(Ⅰ)設(shè)公比為,
則,,
∵是和的等差中項,
∴,
即
解得,
∴.
(Ⅱ)由(Ⅰ)可知,,
則
.
考點:1.等差數(shù)列的前項和;2.等比數(shù)列的前項和;3.等差中項;4.等比數(shù)列的通項公式
科目:高中數(shù)學(xué) 來源: 題型:
已知在等比數(shù)列中,各項都是正數(shù),且,,成等差數(shù)列,則=( )
A.1+ B.1- C.3+2 D.3-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校聯(lián)盟高三下學(xué)期第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知在等比數(shù)列中,,且是和的等差中項.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年湖南省高二上學(xué)期段考試題理科數(shù)學(xué)卷 題型:填空題
已知在等比數(shù)列中,各項均為正數(shù),且則數(shù)列的通項公式是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com