分析 設(shè)出直線方程x-y+a=0,根據(jù)坐標(biāo)原點(diǎn)到直線l的距離是$\sqrt{2}$,求出a的值,從而求出直線方程即可.
解答 解:直線l在兩坐標(biāo)軸上的截距互為相反數(shù),
設(shè)直線l的方程是:x-y+a=0,
∵坐標(biāo)原點(diǎn)到直線l的距離為$\sqrt{2}$,
∴d=$\frac{|a|}{\sqrt{2}}$=$\sqrt{2}$,解得:a=±2,
故直線方程是:y=x±2,
故答案為:y=x±2.
點(diǎn)評(píng) 本題考查了求直線方程問題,考查點(diǎn)到直線的距離公式,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (1,+∞) | C. | ($\frac{\sqrt{3}-1}{2}$,+∞) | D. | ($\frac{\sqrt{2}-1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A,B兩點(diǎn)在平面α的同側(cè) | B. | A,B兩點(diǎn)在平面α的異側(cè) | ||
C. | 過A,B兩點(diǎn)必有垂直于平面α的平面 | D. | 過A,B兩點(diǎn)必有平行于平面α的平面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-x-1 | B. | y=x | C. | y=-x | D. | y=x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com