【題目】已知函數.
(1)當時,證明:;
(2)若在有且只有一個零點,求的范圍.
【答案】(1)證明見解析;(2).
【解析】
(1)構造函數,利用導數可得其最小值大于等于,進而得證;
(2)構造函數,,,,則函數與的圖象在上有且僅有一個交點,分類討論即可得出結論.
(1)當時,,
令,則,
當時,,當時,,
所以,函數的單調遞減區(qū)間為,單調遞增區(qū)間為.
所以,函數在處取得極小值,亦即最小值,即,
故,即,即得證;
(2)依題意,方程在上只有一個解,
記,,,,則函數與的圖象在上有且僅有一個交點,
又在上恒成立,故函數在上單調遞增,
(i)當時,函數在單調遞增,在單調遞減,
且,,,如圖,
顯然,此時滿足函數與的圖象在上有且僅有一個交點,符合題意;
(ii)當時,,顯然在上有且僅有一個零點,符合題意;
(iii)當時,函數在單調遞減,在單調遞增,且,,,如圖,
要使函數與的圖象在上有且僅有一個交點,只需,即,即,又,故.
綜上,實數的取值范圍為.
科目:高中數學 來源: 題型:
【題目】已知是拋物線的焦點,是拋物線上一點過三點的圓的圓心為,點到拋物線的準線的距離為.
(1)求拋物線的方程;
(2)若點的橫坐標為4,過的直線與拋物線有兩個不同的交點,直線與圓交于點,且點的橫坐標大于4,求當取得最小值時直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了解該校高三年級學生數學科學習情況,對一?荚嚁祵W成績進行分析,從中抽取了名學生的成績作為樣本進行統(tǒng)計,該校全體學生的成績均在,按照,,,,,,,的分組作出頻率分布直方圖如圖(1)所示,樣本中分數在內的所有數據的莖葉圖如圖(2)所示.根據上級統(tǒng)計劃出預錄分數線,有下列分數與可能被錄取院校層次對照表為表(3).
分數 | |||
可能被錄取院校層次 | ? | 本科 | 重本 |
圖(3)
(1)求和頻率分布直方圖中的,的值;
(2)根據樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學生中任取3人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和?苾蓚層次的學生中隨機抽取3名學生進行調研,用表示所抽取的3名學生中為重本的人數,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:和直線:,是直線上一點,過點做拋物線的兩條切線,切點分別為,,是拋物線上異于,的任一點,拋物線在處的切線與,分別交于,,則外接圓面積的最小值為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左頂點為,右焦點為,斜率為1的直線與橢圓交于,兩點,且,其中為坐標原點.
(1)求橢圓的標準方程;
(2)設過點且與直線平行的直線與橢圓交于,兩點,若點滿足,且與橢圓的另一個交點為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現隨機抽取某地200戶家庭進行調查統(tǒng)計.這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數為60.
(1)完成下列列聯表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關;
生二孩 | 不生二孩 | 合計 | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計 | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數的分布列及數學期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com