分析 設(shè)等比數(shù)列{an}公比為q,由題意可得首項和公比的方程組,解方程組由等比數(shù)列的通項公式,代入數(shù)列{nan},再由錯位相減法得答案.
解答 解:設(shè)等比數(shù)列{an}公比為q,
由a2=$\frac{2}{3}$,S3=$\frac{7}{3}$,得a2=$\frac{2}{3}$,a1+a3=$\frac{5}{3}$,
由等比數(shù)列的通項公式可得$\left\{\begin{array}{l}{{a}_{1}q=\frac{2}{3}}\\{{a}_{1}+{a}_{1}{q}^{2}=\frac{5}{3}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=\frac{1}{3}}\\{q=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=\frac{4}{3}}\\{q=\frac{1}{2}}\end{array}\right.$,
∵a1<a2,∴$\left\{\begin{array}{l}{{a}_{1}=\frac{1}{3}}\\{q=2}\end{array}\right.$,
∴an=$\frac{1}{3}×{2}^{n-1}$,
則nan=$\frac{n}{3}×{2}^{n-1}$.
∴Tn=$\frac{1}{3}$(1•20+2•21+…+n•2n-1),
$2{T}_{n}=\frac{1}{3}(1•{2}^{1}+2•{2}^{2}+…+n•{2}^{n})$,
兩式作差得$-{T}_{n}=\frac{1}{3}(1+{2}^{1}+{2}^{2}+…+{2}^{n-1}-n•{2}^{n})$=$\frac{1}{3}(\frac{1×(1-{2}^{n})}{1-2}-n•{2}^{n})$=$\frac{1}{3}({2}^{n}-1-n•{2}^{n})$.
∴${T}_{n}=\frac{(n-1)•{2}^{n}+1}{3}$.
故答案為:$\frac{(n-1)•{2}^{n}+1}{3}$.
點評 本題考查數(shù)列遞推式,考查了錯位相減法求數(shù)列的前n項和,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x<5} | B. | {1,2,3,4} | C. | {0,1,2,3,4,5} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 200 | B. | 160 | C. | 120 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin2x-cos2x | B. | y=sin2x+cos2x | C. | y=sin2x-2cosx | D. | y=sin2x+2cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2-4x+6y-8=0 | B. | x2+y2-4x+6y+8=0 | C. | x2+y2+4x-6y-8=0 | D. | x2+y2+4x-6y+8=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | 9 | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com