求函數(shù)y=1-sin
x
2
的單調(diào)增區(qū)間.
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)單調(diào)性質(zhì)的性質(zhì)即可得到結(jié)論.
解答: 解:要求=1-sin
x
2
的單調(diào)增區(qū)間,即求=sin
x
2
的單調(diào)減區(qū)間,
則由2kπ+
π
2
x
2
≤2kπ+
2
,k∈Z,
即4kπ+π≤x≤4kπ+3π,k∈Z,
即函數(shù)y=1-sin
x
2
的單調(diào)增區(qū)間為[4kπ+π,4kπ+3π],k∈Z
點(diǎn)評(píng):本題主要考查三角函數(shù)的單調(diào)區(qū)間的求解,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c滿足條件;①y=f(x)的圖象過點(diǎn)
1
,
1
,②當(dāng)x=-1時(shí),y=f(x)取得最小值是0.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-k2x在
-1
,
1
上是單調(diào)函數(shù),求k的取值范圍;
(3)是否存在自然數(shù)m,使得關(guān)于x的不等式f(x-m)≤x在區(qū)間[1,
4
上有解?若存在,求出自然數(shù)m的取值集合,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinx>cosx的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
x
+
5-x
,若關(guān)于x的不等式f(x)≤|m-2|恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用弧度制表示頂點(diǎn)在原點(diǎn),始邊重合x軸非負(fù)半軸,終邊落在下圖中陰影部分內(nèi)的角的集合(包括邊界).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4個(gè)人去借3本不同的書,全部借完,所有借法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求導(dǎo):f(x)=
a+blnx
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知(
3
x
-
3x
)n
的展開式的各項(xiàng)系數(shù)之和等于(4
3x
-
1
5x
)5
展開式中的常數(shù)項(xiàng),求n;
(2)求(1-x)3+(1-x)4+…+(1-x)10展開式中x2項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)
x2-2x-1,(x≥0)
x2+mx-1,(x<0)
是偶函數(shù).
(1)求實(shí)數(shù)m的值;
(2)作出函數(shù)y=f(x)的圖象,并寫出其單調(diào)區(qū)間;
(3)就實(shí)數(shù)k的取值范圍,討論函數(shù)y=f(x)-k零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案