對(duì)于數(shù)列,把作為新數(shù)列的第一項(xiàng),把或()作為新數(shù)列的第項(xiàng),數(shù)列稱為數(shù)列的一個(gè)生成數(shù)列.例如,數(shù)列的一個(gè)生成數(shù)列是.已知數(shù)列為數(shù)列的生成數(shù)列,為數(shù)列的前項(xiàng)和.
(1)寫出的所有可能值;
(2)若生成數(shù)列滿足的通項(xiàng)公式為,求.
(1)(2)
解析試題分析:(1)列舉出數(shù)列所有可能情況,共種,分別計(jì)算和值為,本題目的初步感觀生成數(shù)列,(2)分段函數(shù)求和,注意“間斷的周期性”. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/9/1kojv3.png" style="vertical-align:middle;" />,所以間斷的周期為3,每3個(gè)作為一個(gè)“大元素”,所以先求.再利用求及的.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/a/t3sb02.png" style="vertical-align:middle;" />
,所以當(dāng)時(shí),當(dāng),
試題解析:解:(1)由已知,,,
∴,
由于,
∴可能值為. 3分
(2)∵.
∴時(shí),
.
.
時(shí),
;
時(shí),
;
13分注:若有其它解法,請(qǐng)酌情給分】
考點(diǎn):數(shù)列求和
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的各項(xiàng)均為正數(shù),是數(shù)列的前n項(xiàng)和,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的前項(xiàng)和,且,=225
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列中,是數(shù)列的前項(xiàng)和,對(duì)任意,有
.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某市2013年發(fā)放汽車牌照12萬(wàn)張,其中燃油型汽車牌照10萬(wàn)張,電動(dòng)型汽車2萬(wàn)張.為了節(jié)能減排和控制總量,從2013年開始,每年電動(dòng)型汽車牌照按50%增長(zhǎng),而燃油型汽車牌照每一年比上一年減少萬(wàn)張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過(guò)15萬(wàn)張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列,每年發(fā)放的電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個(gè)數(shù)列的通項(xiàng)公式;
(2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開始超過(guò)200萬(wàn)張?
| | | ||
3 | | | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N*,數(shù)列{bn}滿足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求數(shù)列{an·bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列、中,,且當(dāng)時(shí),,.記的階乘.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:數(shù)列為等差數(shù)列;
(3)若,求的前 項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,且=-n+20n,n∈N.
(Ⅰ)求通項(xiàng);
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com