已知函數(shù),數(shù)列an滿足
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求a2n-1-a2n+1及Tn;
(3)令對(duì)一切n∈N*成立,求最小正整數(shù)m.
【答案】分析:本題考查的是數(shù)列與不等式的綜合問(wèn)題.在解答時(shí):
(1)結(jié)合函數(shù)解析式和遞推關(guān)系即可探索出數(shù)列的特點(diǎn),再利用等差數(shù)列的特點(diǎn)即可求得數(shù)列{an}的通項(xiàng)公式;
(2)結(jié)合(1)的結(jié)論即可獲得a2n-1-a2n+1的值,同時(shí)通過(guò)a2n-1•a2n-a2n•a2n+1的表達(dá)即可獲得Tn中數(shù)列的通項(xiàng),結(jié)合等差數(shù)列的知識(shí)即可獲得問(wèn)題的解答;
(3)首先利用(1)的結(jié)論對(duì)bn進(jìn)行化簡(jiǎn),再利用裂項(xiàng)的方法即可獲得問(wèn)題的解答.
解答:解:(1)由題意可知:,
∴數(shù)列{an}為以1為首項(xiàng),以為公差的等差數(shù)列,
所以通向公式為,
即:,n∈N*;
(2)∵Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,結(jié)合(1)的結(jié)論可知:

,
故:
(3)∵

=


又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221528943893707/SYS201311012215289438937021_DA/14.png">對(duì)一切n∈N*成立,

故:m的最小值為2009.
點(diǎn)評(píng):本題考查的是數(shù)列與不等式的綜合問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了遞推公式的知識(shí)、等差數(shù)列的知識(shí)、列項(xiàng)的方法以及恒成立問(wèn)題的解答規(guī)律.值得同學(xué)們體會(huì)和反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+
1
2
,(x≤
1
2
)
2x-1,(
1
2
<x<1)
x-1,(x≥1)
,若數(shù)列{an}滿a1=
7
3
,an+1=f(an),n∈N*,則a2006+a2009+a2010=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:聊城一中數(shù)列測(cè)試題 題型:044

已知函數(shù)f(x)=(x≠-1).設(shè)數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿bn=|an|,Sn=b1+b2+…+bn(n∈N*)

(Ⅰ)用數(shù)學(xué)歸納法證明

(Ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省黃岡市黃州一中高三(上)月考數(shù)學(xué)試卷(1月份)(解析版) 題型:填空題

已知函數(shù)f(x)=若數(shù)列{an}滿a1=,an+1=f(an),n∈N*,則a2006+a2009+a2010=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年河南省開(kāi)封市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:填空題

已知函數(shù)f(x)=若數(shù)列{an}滿a1=,an+1=f(an),n∈N*,則a2006+a2009+a2010=   

查看答案和解析>>

同步練習(xí)冊(cè)答案