(本小題滿分12分)
已知橢圓C過點(diǎn)
,兩個(gè)焦點(diǎn)為
,
,O為坐標(biāo)原點(diǎn)。
(I)求橢圓C的方程;
(Ⅱ)直線
l過 點(diǎn)A(—1,0),且與橢圓C交于P,Q兩點(diǎn),求△BPQ面積的最大值。
解: (Ⅰ)由題意,
,可設(shè)橢圓方程為
因?yàn)锳在橢圓上,所以
,解得
,
(舍去)
所以橢圓方程為
……5分
(Ⅱ)設(shè)直線
的方程為:
,
,
,則
所以
……9分
令
,則
,所以
,而
在
上單調(diào)遞增
所以
。
當(dāng)
時(shí)取等號,即當(dāng)
時(shí),
的面積最大值為3!12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題満分12分)
已知一條曲線上的每個(gè)點(diǎn)M到A(1,0)的距離減去它到y軸的距離差都是1.
(1)求曲線的方程;
(2)討論直線y=kx+1(k∈R)與曲線的公共點(diǎn)個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)斜率為2的直線
l過拋物線
y2=
ax(
a≠0)的焦點(diǎn)
F,且和
y軸交于點(diǎn)
A,若△
OAF(
O為坐標(biāo)原點(diǎn))的面積為4,則拋物線的方程為( )
A.y2=±4x | B.y2=±8 | C.y2=4x | D.y2=8x |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
定長為3的線段AB兩端點(diǎn)A、B分別在
軸,
軸上滑動(dòng),M在線段AB上,且
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)過
且不垂直于坐標(biāo)軸的動(dòng)直線
交軌跡C于A、B兩點(diǎn),問:線段
上
是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)從圓
:
外一動(dòng)點(diǎn)
向圓
引一條切線,切點(diǎn)為
,且
(
為坐標(biāo)原點(diǎn)),求
的最小值和
取得最小值時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
的準(zhǔn)線過雙曲線
的一個(gè)焦點(diǎn),則雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是橢圓
的左、右焦點(diǎn),過點(diǎn)
作
傾斜角為
的動(dòng)直線
交橢圓于
兩點(diǎn).當(dāng)
時(shí),
,且
.
(1)求橢圓的離心率及橢圓的標(biāo)準(zhǔn)方程;
(2)求△
面積的最大值,并求出使面積達(dá)到最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若曲線
與曲線
有四個(gè)不同的交點(diǎn),則實(shí)數(shù)
的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
拋物線
的焦點(diǎn)坐標(biāo)是___________
查看答案和解析>>