(2007
上海春,19)某人定制了一批地磚.每塊地磚(如圖(1)所示)是邊長為0.4米的正方形ABCD,點E、F分別在邊BC和CD上,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價格之比依次為3∶2∶1.若將此種地磚按圖(2)所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形EFGH.(1)
求證:四邊形EFGH是正方形;(2)E
、F在什么位置時,定制這批地磚所需的材料費用最省?
解析: (1)證明:如圖(2)所示是由四塊圖(1)所示地磚繞點C按順時針旋轉(zhuǎn)90°后得到,△CFE為等腰直角三角形,∴ 四邊形EFGH是正方形. (4分)(2) 設(shè)CE=x,則BE=0.4-x,每塊地磚的費用為W,制成△CFE、△ABE和四邊形AEFD三種材料的每平方米價格依次為3a、2a、a(元),(11 分)由 a>0,當(dāng)x=0.1時,W有最小值,即總費用為最省.答:當(dāng) CE=CF=0.1米時,總費用最省. (14分) |
剖析:本題考查平面幾何的知識以及二次函數(shù)在有限區(qū)間上的值域問題,考查對實際問題的理解以及解決應(yīng)用問題的能力. |
科目:高中數(shù)學(xué) 來源: 題型:044
(2007
上海春,17)求出一個數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.例如,原來問題是“若正四棱錐底面邊長為
4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為,求側(cè)棱長”;也可以是“若正四棱錐的體積為,求所有側(cè)面面積之和的最小值”.試給出問題“在平面直角坐標(biāo)系
xOy中,求點P(2,1)到直線3x+4y=0的距離”的一個有意義的“逆向”問題,并解答你所給出的“逆向”問題.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
(2007
上海春,20)通常用a、b、c分別表示△ABC的三個內(nèi)角A、B、C所對邊的邊長,R表示△ABC的外接圓半徑.(1)
如圖所示,在以O為圓心、半徑為2的⊙O中,BC和BA是圓的弦,其中BC=2,∠ABC=45°,求弦AB的長;(2)
在△ABC中,若∠C是鈍角,求證:;(3)
給定三個正實數(shù)a、b、R,其中b≤a.問:a、b、R滿足怎樣的關(guān)系時,以a、b為邊長,R為外接圓半徑的△ABC不存在、存在一個或存在兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com