精英家教網 > 高中數學 > 題目詳情

已知集合,
(1)若,求的取值范圍;
(2)是否存在實數使得?若存在求出的取值范圍;若不存在,請說明理由.

(1);(2).

解析試題分析:(1)已知兩個集合之間的關系求參數時,要明確集合中的元素,對子集是否為空集進行分類討論,做到不漏解;(2)恒成立問題一般需轉化為最值,利用單調性證明在閉區(qū)間的單調性.(3)一元二次不等式在上恒成立,看開口方向和判別式.(4)含參數的一元二次不等式在某區(qū)間內恒成立的問題通常有兩種處理方法:一是利用二次函數在區(qū)間上的最值來處理;二是分離參數,再去求函數的最值來處理,一般后者比較簡單,對于恒成立的問題,常用到以下兩個結論:(1),(2)
試題解析:(1)因為,所以,

法一:轉化恒成立的不等式 也就是當時,不等式恒成立,即恒成立,令,則為減函數,故,所以,即;      7分
法二:數形結合 令,則,得;      7分
(2)因為,所以要使,只要能成立,也就是能成立,只要即可,由(1)知,即.     13分
考點:(1)集合間的基本關系;(2)利用最值證明恒成立問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

若集合,,則=______

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知全集U={1,2,3,4},集合是它的子集,
(1)求;(2)若=B,求的值;(3)若,求.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知集合,,,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的值域為集合A,函數的定義域為集合B.
(1)求集合A,B;
(2)若集合A,B滿足,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設不等式的解集為.
(1)求集合;
(2)設關于的不等式的解集為,若,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1)k-1k,…,即當<n≤(k∈N*)時,an=(-1)k-1k,記Sn=a1+a2+…+an(n∈N*).對于l∈N*,定義集合Pl={n|Sn是an的整數倍,n∈N*,且1≤n≤l}.
(1)求集合P11中元素的個數;
(2)求集合P2 000中元素的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知集合,若,則實數的取值范圍是,其中=      ;

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

某班有學生人,其中體育愛好者人,音樂愛好者人,還有人既不愛好體育也不愛好音樂,則該班既愛好體育又愛好音樂的人數為         

查看答案和解析>>

同步練習冊答案