【題目】如圖,四邊形ABCD是平行四邊形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G為BC的中點.

(1)求證:FG平面BED;

(2)求證:平面BED平面AED;

(3)求直線EF與平面BED所成角的正弦值.

【答案】

【解析】1)如圖,取中點,連接

中,因為中點,所以,

又因為,所以,即四邊形是平行四邊形,

所以,(2分)

平面,平面,所以平面.(3分)

2)在中,°,由余弦定理可得,

進(jìn)而得°,即,(5分)

又因為平面平面平面,平面平面,

所以平面.(6分)

又因為平面,所以平面平面.(7分)

3)因為,所以直線與平面所成的角即為直線與平面所成的角.

過點于點,連接,

又平面平面,由(2)知平面,

所以直線與平面所成的角即為.(9分)

中,,由余弦定理得,

所以,因此,

中,,

所以直線EF與平面所成角的正弦值為.(12分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間點處,丙船在最后面的點處,且.一架無人機(jī)在空中的點處對它們進(jìn)行數(shù)據(jù)測量,在同一時刻測得 .(船只與無人機(jī)的大小及其它因素忽略不計)

(1)求此時無人機(jī)到甲、丙兩船的距離之比;

(2)若此時甲、乙兩船相距100米,求無人機(jī)到丙船的距離.(精確到1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是直線上任意一點,過,線段的垂直平分線交于點.

(Ⅰ)求點的軌跡對應(yīng)的方程;

(Ⅱ)過點的直線與點的軌跡相交于兩點,( 點在軸上方),點關(guān)于軸的對稱點為,且,求的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=﹣x3
B.y=
C.y=x
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今信息時代,眾多高中生也配上了手機(jī).某校為研究經(jīng)常使用手機(jī)是否對學(xué)習(xí)成績有影響,隨機(jī)抽取高三年級50名理科生的一次數(shù)學(xué)周練成績,用莖葉圖表示如下圖:

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為經(jīng)常使用手機(jī)對學(xué)習(xí)成績有影響?

及格(

不及格

合計

很少使用手機(jī)

經(jīng)常使用手機(jī)

合計

(2)從50人中,選取一名很少使用手機(jī)的同學(xué)記為甲和一名經(jīng)常使用手機(jī)的同學(xué)記為乙,解一道數(shù)列題,甲、乙獨立解決此題的概率分別為 , ,若,則此二人適合結(jié)為學(xué)習(xí)上互幫互助的“師徒”,記為兩人中解決此題的人數(shù),若,問兩人是否適合結(jié)為“師徒”?

參考公式及數(shù)據(jù): ,其中.

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求關(guān)于的回歸方程;

(2)政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅的銷售均價.

參考數(shù)據(jù): , ;

回歸方程中斜率和截距的最小二乘法估計公示分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線共焦點,拋物線上的點My軸的距離等于,且橢圓與拋物線的交點Q滿足

(I)求拋物線的方程和橢圓的方程;

(II)過拋物線上的點作拋物線的切線交橢圓于、 兩點,設(shè)線段AB的中點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式=a1a4﹣a2a3; 函數(shù)g(θ)=(其中0≤θ≤).
(1)證明:函數(shù)f(x)在(0,+∞)上也是增函數(shù);
(2)若函數(shù)g(θ)的最大值為4,求m的值;
(3)若記集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y).當(dāng)x>0時,f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若f(1)= ,試求f(x)在區(qū)間[﹣2,6]上的最值.

查看答案和解析>>

同步練習(xí)冊答案