【題目】上海市旅游節(jié)剛落下帷幕,在旅游節(jié)期間,甲、乙、丙三位市民顧客分別獲得一些景區(qū)門票的折扣消費(fèi)券,數(shù)量如表1,已知這些景區(qū)原價(jià)和折扣價(jià)如表2(單位:元).
表1:
數(shù)量 | 景區(qū)1 | 景區(qū)2 | 景區(qū)3 |
甲 | 0 | 2 | 2 |
乙 | 3 | 0 | 1 |
丙 | 4 | 1 | 0 |
表2:
門票 | 景區(qū)1 | 景區(qū)2 | 景區(qū)3 |
原價(jià) | 60 | 90 | 120 |
折扣后價(jià) | 40 | 60 | 80 |
(1)按照上述表格的行列次序分別寫出這三位市民獲得的折扣消費(fèi)券數(shù)量矩陣A和三個(gè)景區(qū)的門票折扣后價(jià)格矩陣B;
(2)利用你所學(xué)的矩陣知識(shí),計(jì)算三位市民各獲得多少元折扣?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】順次連接橢圓的四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長(zhǎng)為且面積為的菱形。
(1)求橢圓的方程;
(2),是橢圓上的兩個(gè)不同點(diǎn),若直線,的斜率之積為(以為坐標(biāo)原點(diǎn)),線段上有一點(diǎn)滿足,連接并延長(zhǎng)交橢圓于點(diǎn),求橢圓的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的個(gè)數(shù)是( ).
①“若,則,中至少有一個(gè)不小于2”的逆命題是真命題;
②命題“設(shè),若,則或”是一個(gè)真命題;
③命題,,則是的必要不充分條件;
④命題“,使得”的否定是:“,均有”.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)ABC-A1B1C1中,底面ABC是邊長(zhǎng)為2的等邊三角形,上、下底面的面積之比為1:4,側(cè)面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°.
(1)平面A1C1B∩平面ABC=l,證明:A1C1∥l;
(2)求四棱錐B-A1ACC1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了三款軟件,為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng),這三款軟件的激活碼分別為下面數(shù)學(xué)問題的三個(gè)答案:已知數(shù)列,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,再接下來(lái)的三項(xiàng)是,以此類推,試根據(jù)下列條件求出三款軟件的激活碼
(1)A款應(yīng)用軟件的激活碼是該數(shù)列中第四個(gè)三位數(shù)的項(xiàng)數(shù)的平方
(2)B款應(yīng)用軟件的激活碼是該數(shù)列中第一個(gè)四位數(shù)及其前所有項(xiàng)的和
(3)C款應(yīng)用軟件的激活碼是滿足如下條件的最小整數(shù):①;②該數(shù)列的前項(xiàng)和為2的整數(shù)冪
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的長(zhǎng)軸長(zhǎng)為4,左、右頂點(diǎn)分別為,經(jīng)過點(diǎn)的動(dòng)直線與橢圓相交于不同的兩點(diǎn)(不與點(diǎn)重合).
(1)求橢圓的方程及離心率;
(2)求四邊形面積的最大值;
(3)若直線與直線相交于點(diǎn),判斷點(diǎn)是否位于一條定直線上?若是,寫出該直線的方程. (結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:在左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),若是面積為的等邊三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知,是橢圓上的兩點(diǎn),且,求使的面積最大時(shí)直線的方程(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線與平面所成角的正弦值;
(2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com