(本小題共14分)某單位舉辦2010年上海世博會知識宣傳活動,進行現(xiàn)場抽獎,
盒中裝有9張大小相同的精美卡片,卡片上分別印有“世博會會徽” 或“海寶”(世博會吉祥物)圖案;抽獎規(guī)則是:參加者從盒中抽取卡片兩張,若抽到兩張都是“海寶”卡
即可獲獎,否則,均為不獲獎.卡片用后放回盒子,下一位參加者繼續(xù)重復(fù)進行.
(1)活動開始后,一位參加者問:盒中有幾張“海寶”卡?主持人答:我只知道,
從盒中抽取兩張都是“世博會會徽“卡的概率是,求抽獎?wù)攉@獎的概率;
(2)現(xiàn)有甲、乙、丙、丁四人依次抽獎,用表示獲獎的人數(shù),求的分布列及的值.

(1)
(2)

0
1
2
3
4
P





說明:分布列中對一個得1分;計算出具體數(shù)字也給分!12分
解:(I)設(shè)“世博會會徽”卡有張,由………………3分
故“海寶”卡有4張,抽獎?wù)攉@獎的概率為 ………………7分
(II)

0
1
2
3
4
P





說明:分布列中對一個得1分;計算出具體數(shù)字也給分!12分
,    ………………14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某大學畢業(yè)生響應(yīng)國家號召,到某村參加村委會主任應(yīng)聘考核?己艘来畏譃楣P試、面
試.試用共三輪進行,規(guī)定只有通過前一輪考核才能進入下一輪考核,否則將被淘汰,
三輪考核都通過才能被正式錄用。設(shè)該大學畢業(yè)生通過三輪考核的概率分別為, 且各輪考核通過與否相互獨立。
(Ⅰ)求該大學畢業(yè)生未進入第三輪考核的概率;
(Ⅱ)設(shè)該大學畢業(yè)生在應(yīng)聘考核中考核次數(shù)為ξ,求ξ的數(shù)學期望和方差。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)
一次數(shù)學考試共有10道選擇題,每道選擇題都有4個選項,其中有且只有一個選項是正確的.設(shè)計試卷時,安排前n道題使考生都能得出正確答案,安排8-n道題,每題得出正確答案的概率為,安排最后兩道題,每題得出正確答案的概率為,且每題答對與否相互獨立,同時規(guī)定:每題選對得5分,不選或選錯得0分.
(1)當n=6時,
①分別求考生10道題全答對的概率和答對8道題的概率;
②問:考生答對幾道題的概率最大,并求出最大值;
(2)要使考生所得分數(shù)的期望不小于40分,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個袋中裝有個形狀大小完全相同的小球,球的編號分別為.
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(Ⅱ)若從袋中每次隨機抽取個球,有放回的抽取3次,求恰有次抽到號球的概率;
(Ⅲ)若一次從袋中隨機抽取個球,記球的最大編號為,求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文科做)
設(shè)集合,,且滿足, 若
(Ⅰ) 求b = c的概率;
(Ⅱ)求方程有實根的概率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知8個球隊中有3個弱隊,以抽簽方式將這8個球隊分為A、B兩組,每組4個.求
(Ⅰ)A、B兩組中有一組恰有兩個弱隊的概率;
(Ⅱ)A組中至少有兩個弱隊的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)某購物廣場擬在五一節(jié)舉行抽獎活動,規(guī)則是:從裝有編號為0,1,2,3四個小球的抽獎箱中同時抽出兩個小球,兩個小球號碼相加之和等于5中一等獎,等于4中二等獎,等于3中三等獎.
(1)求中三等獎的概率;
(2)求中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,墻上掛有一邊長為1的正方形木板,它的陰影部分
是由函數(shù)的圖象圍成的圖形.
某人向此板投鏢,假設(shè)每次都能擊中木板,且擊中木板上
每個點的可能性都一樣,則他擊中陰影部分的概率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知且E()=10,D()=6,則              .

查看答案和解析>>

同步練習冊答案