15.已知向量$\overrightarrow{a}=(1,x),\overrightarrow=(x,3)$,若$\overrightarrow{a}∕∕\overrightarrow$,則$\left|\overrightarrow{a}\right|$等于2.

分析 根據(jù)題意,由平面向量共線的坐標表示方法可得x2=1×3=3,解可得x的值,進而代入向量模的坐標公式計算可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow{a}=(1,x),\overrightarrow=(x,3)$,且$\overrightarrow{a}∕∕\overrightarrow$,
則有x2=1×3=3,
解可得x=±$\sqrt{3}$,
則$\left|\overrightarrow{a}\right|$=$\sqrt{3+1}$=2;
故答案為:2.

點評 本題考查平面向量共線的坐標表示,涉及向量的模的計算,關鍵是求出x的值,得到$\overrightarrow{a}$的坐標.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.命題“?x∈R,x2+1≥x”的否定是?x∈R,x2+1<x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.定義在R上的函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當$x∈[0,\frac{π}{2})$時,f(x)=sinx,則$f(\frac{8}{3}π)$的值為( 。
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知正數(shù)數(shù)列{an}滿足:Sn=n2+2n-2,其中Sn為數(shù)列{an}的前n項和.
(1)求數(shù)列{an}的通項an; 
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=ax2+x(a≠0)與$g(x)={(\frac{a+1}{a})}^{x}$在同一坐標系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1-x}{1+{x}^{2}}{e}^{x}$.
(Ⅰ)求f(x)在點(0,f(0))處的切線方程;
(Ⅱ)證明:當f(x1)=f(x2)(x1≠x2)時,x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C的左,右焦點坐標分別為(-2,0),(2,0),離心率為$\frac{\sqrt{2}}{2}$,若P為橢圓C上的一點,過點P垂直于y軸的直線交y軸于點Q,M為線段QP的中點.點(1,$\frac{3}{2}$)在橢圓C上.
(1)求橢圓C短軸長;
(2)求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個正三棱柱的主視圖如圖所示,則其左視圖的面積( 。
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C的焦點與雙曲線$\frac{y^2}{3}$-x2=1的頂點重合,橢圓C的長軸長為4.
(1)求雙曲線的實軸,虛軸長及漸近線方程.
(2)求橢圓C的標準方程;
(3)若已知直線y=x+m.當m為何值時,直線與橢圓C有公共點?

查看答案和解析>>

同步練習冊答案