(2009•普陀區(qū)一模)
lim
n→∞
2n2+1
1+3+5+…+(2n-1)
=
2
2
分析:由于分母是等差數(shù)列的和,可先利用等差數(shù)列的求和公式求和,再求數(shù)列的極限.
解答:解:由于分母是等差數(shù)列的和,可先利用等差數(shù)列的求和公式求和,故有
lim
n→∞
2n2+1
1+3+5+…+(2n-1)
=
lim
n→∞
2n2+1
n2
=
lim
n→∞
(2+
1
n2
)=2

故答案為2.
點(diǎn)評(píng):本題的考點(diǎn)是數(shù)列的極限,主要考查等差數(shù)列的求和公式,考查數(shù)列極限求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)拋物線y2+8x=0的焦點(diǎn)坐標(biāo)為
(-2,0)
(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)設(shè)函數(shù)f(x)=lg(x2-x-2)的定義域?yàn)榧螦,函數(shù)g(x)=
3
x
-1
的定義域?yàn)榧螧.已知α:x∈A∩B,β:x滿足2x+p<0,且α是β的充分條件,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)函數(shù)y=2cos2x+sin2x,x∈R的最大值是
2
+1
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)設(shè)F1,F(xiàn)2分別是橢圓
x2
9
+
y2
4
=1
的左、右焦點(diǎn).若點(diǎn)P在橢圓上,且|
PF1
+
PF2
|=2
5
,則向量
PF1
與向量
PF2
的夾角的大小為
90°
90°

查看答案和解析>>

同步練習(xí)冊(cè)答案