16.已知E,F(xiàn),G,H分別是空間四邊形四條邊AB,BC,CD,DA的中點(diǎn),
(1)求證四邊形EFGH是平行四邊
(2)若AC⊥BD時,求證:EFGH為矩形.

分析 (1)利用三角形的中位線定理、平行四邊形的判定定理可得:四邊形EFGH是平行四邊形.
(2)由EF∥AC,EH∥BD,AC⊥BD可得EF⊥EH.即可證明平行四邊形EFGH是矩形.

解答 (1)證明:連結(jié)AC,BD,
∵E,F(xiàn)是△ABC的邊AB,BC上的中點(diǎn),
∴EF∥AC,
同理,HG∥AC,
∴EF∥HG,
同理,EH∥FG,
∴四邊形EFGH是平行四邊;
(2)證明:由(1)四邊形EFGH是平行四邊形.
∵EF∥AC,EH∥BD,
∴由AC⊥BD得,EF⊥EH,
∴EFGH為矩形.

點(diǎn)評 本題考查了三角形的中位線定理、平行四邊形的判定、矩形的判定定理,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論,其中錯誤的結(jié)論是( 。
A.AC⊥BDB.△ACD是等邊三角形
C..AB與CD所成的角為60°D.AB與平面BCD所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)的定義域?yàn)閇-1,5],則函數(shù)f(2x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,11]B.[-1,5]C.[-1,2]D.[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若A、B是銳角三角形△ABC的兩個內(nèi)角,如果點(diǎn)P的坐標(biāo)為P(cosB-sinA,sinB-cosA),則點(diǎn)P在直角坐標(biāo)平面內(nèi)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow m=({\sqrt{3}sin2x+2,cosx}),\overrightarrow n=({1,2cosx})$,設(shè)函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求f(x)在$[{0,\frac{π}{4}}]$上的最值;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=4,b=1,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知軸截面為正方形 EFGH 的圓柱的體積為2π,則從點(diǎn)E沿圓柱的側(cè)面到相對頂點(diǎn) G的最短距離是$\sqrt{{π}^{2}+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0,若a是從區(qū)間[0,4]上任取的一個數(shù),b是從區(qū)間[0,3]上任取的一個數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=2exln$\sqrt{e}$-kx(e=2.17128…是自然對數(shù)的底數(shù))有兩個不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(0,+∞)B.[1,+∞)C.(e,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)求不等式x2-4x+3≤0的解集;
(2)求函數(shù)y=x+$\frac{4}{x}$的值域.

查看答案和解析>>

同步練習(xí)冊答案