【題目】某企業(yè)引進(jìn)現(xiàn)代化管理體制,生產(chǎn)效益明顯提高.2018年全年總收入與2017年全年總收入相比增長(zhǎng)了一倍,實(shí)現(xiàn)翻番.同時(shí)該企業(yè)的各項(xiàng)運(yùn)營(yíng)成本也隨著收入的變化發(fā)生了相應(yīng)變化.下圖給出了該企業(yè)這兩年不同運(yùn)營(yíng)成本占全年總收入的比例,下列說(shuō)法正確的是(

A.該企業(yè)2018年原材料費(fèi)用是2017年工資金額與研發(fā)費(fèi)用的和

B.該企業(yè)2018年研發(fā)費(fèi)用是2017年工資金額、原材料費(fèi)用、其它費(fèi)用三項(xiàng)的和

C.該企業(yè)2018年其它費(fèi)用是2017年工資金額的

D.該企業(yè)2018年設(shè)備費(fèi)用是2017年原材料的費(fèi)用的兩倍

【答案】B

【解析】

先對(duì)折線圖信息的理解及處理,再結(jié)合數(shù)據(jù)進(jìn)行簡(jiǎn)單的合情推理逐一檢驗(yàn)即可得解.

解:由折線圖可知:不妨設(shè)2017年全年的收入為t,則2018年全年的收入為2t.

對(duì)于選項(xiàng)A,該企業(yè)2018年原材料費(fèi)用為0.3×2t0.6t,2017年工資金額與研發(fā)費(fèi)用的和為0.2t+0.1t0.3t,故A錯(cuò)誤;

對(duì)于選項(xiàng)B,該企業(yè)2018年研發(fā)費(fèi)用為0.25×2t0.5t,2017年工資金額、原材料費(fèi)用、其它費(fèi)用三項(xiàng)的和為0.2t+0.15t+0.15t0.5t,故B正確;

對(duì)于選項(xiàng)C,該企業(yè)2018年其它費(fèi)用是0.05×2t0.1t,2017年工資金額是0.2t,故C錯(cuò)誤;

對(duì)于選項(xiàng)D,該企業(yè)2018年設(shè)備費(fèi)用是0.2×2t0.4t,2017年原材料的費(fèi)用是0.15t,故D錯(cuò)誤.

故選:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cx22pyp0)的焦點(diǎn)為F,直線l與拋物線C交于PQ兩點(diǎn).

1)若l過(guò)點(diǎn)F,拋物線C在點(diǎn)P處的切線與在點(diǎn)Q處的切線交于點(diǎn)G.證明:點(diǎn)G在定直線上.

2)若p2,點(diǎn)M在曲線y上,MPMQ的中點(diǎn)均在拋物線C上,求△MPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,,DEF分別為線段,的中點(diǎn).

1)證明:平面;

2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若對(duì)于任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電動(dòng)車生產(chǎn)企業(yè),上年度生產(chǎn)電動(dòng)車的投入成本為1萬(wàn)元/輛,出廠價(jià)為1.2萬(wàn)元/輛,年銷售量為1000輛.本年度為適應(yīng)市場(chǎng)需求,計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為,則出廠價(jià)相應(yīng)提高的比例為,且當(dāng)不超過(guò)0.5時(shí),預(yù)計(jì)年銷售量增加的比例為,而當(dāng)超過(guò)0.5時(shí),預(yù)計(jì)年銷售量不變.已知年利潤(rùn)=(出廠價(jià)-投入成本)×年銷售量.則本年度預(yù)計(jì)的年利潤(rùn)與投入成本增加的比例的關(guān)系式為______;為使本年度利潤(rùn)比上年有所增加,投入成本增加的比例的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),e為自然對(duì)數(shù)的底數(shù).

1)求fx)的單調(diào)區(qū)間:

2)若ax2+x+aexx+exlnx0成立,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙M過(guò)點(diǎn),且與⊙N內(nèi)切,設(shè)⊙M的圓心M的軌跡為曲線C

1)求曲線C的方程:

2)設(shè)直線l不經(jīng)過(guò)點(diǎn)且與曲線C相交于P,Q兩點(diǎn).若直線PB與直線QB的斜率之積為,判斷直線l是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出此定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個(gè)極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩人進(jìn)行拋硬幣游戲,規(guī)定:每次拋幣后,正面向上甲贏,否則乙贏.此時(shí),兩人正在游戲,且知甲再贏(常數(shù))次就獲勝,而乙要再贏(常數(shù))次才獲勝,其中一人獲勝游戲就結(jié)束.設(shè)再進(jìn)行次拋幣,游戲結(jié)束.

1)若,,求概率

2)若,求概率的最大值(用表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案