【題目】設(shè)函數(shù)f(x)=ln(2+x)+ln(2﹣x),則f(x)是( )
A.奇函數(shù),且在(0,2)上是增函數(shù)
B.奇函數(shù),且在(0,2)上是減函數(shù)
C.偶函數(shù),且在(0,2)上是增函數(shù)
D.偶函數(shù),且在(0,2)上是減函數(shù)
【答案】D
【解析】解:函數(shù)f(x)=ln(2+x)+ln(2﹣x),的定義域?yàn)椋海ī?,2),
f(﹣x)=ln(2﹣x)+ln(2+x)=f(x),
函數(shù)是偶函數(shù);
函數(shù)f(x)=ln(2+x)+ln(2﹣x)=ln(4﹣x2),在(0,2)上y=4﹣x2是減函數(shù),y=lnx是增函數(shù),
由復(fù)合函數(shù)的單調(diào)性可知函數(shù)f(x)=ln(2+x)+ln(2﹣x)在(0,2)上是減函數(shù),
故選:D.
【考點(diǎn)精析】本題主要考查了復(fù)合函數(shù)單調(diào)性的判斷方法和奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)點(diǎn),需要掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”;奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|x2﹣2x﹣8>0},B={1,5},則集合(UA)∩B為( )
A.{x|1<x<5}
B.{x|x>5}
C.{1}
D.{1,5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】推理:因?yàn)槠叫兴倪呅螌?duì)邊平行且相等,而矩形是特殊的平行四邊形,所以矩形的對(duì)邊平行且相等.以上推理的方法是( )
A.合情推理
B.演繹推理
C.歸納推理
D.類比推理
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(x1 , y1)在函數(shù)y=sin2x圖象上,點(diǎn)(x2 , y2)在函數(shù)y=3的圖象上,則(x1﹣x2)2+(y1﹣y2)2的最小值為( )
A.2
B.3
C.4
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax(a>0,且a≠1)在[1,2]上的最大值和最小值之和為12,則a的值為( )
A.3
B.4
C.﹣4
D.﹣4或3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)是定義在R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)y=f(x)的極值點(diǎn)的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(2πx)2的導(dǎo)數(shù)是( )
A.f′(x)=4πx
B.f′(x)=4π2x
C.f′(x)=8π2x
D.f′(x)=16πx
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com