【題目】某市2011年至2017年新開樓盤的平均銷售價格(單位:千元/平方米)的統(tǒng)計數(shù)據(jù)如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售價格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
附:參考公式:,,其中為樣本平均值。
參考數(shù)據(jù):,.
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2011年至2017年該市新開樓盤平均銷售價格的變化情況,并預(yù)測該市2019年新開樓盤的平均銷售價格。
【答案】(1) .(2) 答案見解析.
【解析】
(1)利用實際問題的已知條件,結(jié)合線性回歸方程求解方法求出關(guān)于的線性回歸方程.
(2)利用(1)問求出的線性回歸方程,用線性回歸分析的方法結(jié)合實際問題的要求分析出2011年至2017年該市新開樓盤平均銷售價格的變化情況,并預(yù)測出該市2019年新開樓盤的平均銷售價格即可.
(1)由題意知:,
,
所以,
,
所以線性回歸方程為:.
(2)由(1)得到,所以2011年至2017年該市新開樓盤平均銷售價格的變化是逐年增加的,平均每年每平方增加0.5千元.
將代入線性回歸方程得到:,
故預(yù)測該市2019年新開樓盤的平均銷售價格為6.9千元/平方米.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個對稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程](10分)
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為,若以極點O為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系.
(1)求圓C的一個參數(shù)方程;
(2)在平面直角坐標(biāo)系中,是圓C上的動點,試求的最大值,并求出此時點P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“學(xué)習(xí)強國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1組,第2組,第3組,第4組,第5組,第6組,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司計劃在甲、乙兩座城市共投資240萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資80萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當(dāng)投資甲城市128萬元時,求此時公司總收益;
⑵試問如何安排甲、乙兩個城市的投資,才能使公司總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵大家節(jié)約用水,自2013年以后,上海市實行了階梯水價制度,其中每戶的綜合用水單價與戶年用水量的關(guān)系如下表所示.
分檔 | 戶年用水量 | 綜合用水單價/(元·) |
第一階梯 | 0220(含) | 3.45 |
第二階梯 | 220300(含) | 4.83 |
第三階梯 | 300以上 | 5.83 |
記戶年用水量為時應(yīng)繳納的水費為元.
(1)寫出的解析式;
(2)假設(shè)居住在上海的張明一家2015年共用水,則張明一家2015年應(yīng)繳納水費多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,是數(shù)列的前項的和.
(1)求數(shù)列的通項公式;
(2)若,,成等差數(shù)列,,18,成等比數(shù)列,求正整數(shù)的值;
(3)是否存在,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分別截取AE=AH=CF=CG=x(x>0),設(shè)四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數(shù)關(guān)系;
(2)求當(dāng)x為何值時y取得最大值,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線:(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點的直角坐標(biāo)為,直線與曲線的交點為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com