如圖直角梯形OABC中,∠COA=∠AOB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分別以O(shè)C,OA,OS為x軸、y軸、z軸建立直角坐標系O-xyz.
(Ⅰ)求
SC
OB
夾角的余弦值;
(Ⅱ)求OC與平面SBC夾角的正弦值;
(Ⅲ)求二面角S-BC-O.
(Ⅰ)如圖所示:C(2,0,0),S(0,0,1),O(0,0,0),B(1,1,0).
SC
=(2,0,-1),
OB
=(1,1,0),
∴cos<
SC
,
OB
>=
2
5
2
=
10
5

SC
OB
夾角的余弦值為
10
5
.…(3分)
(Ⅱ)設(shè)平面SBC的法向量
n
=(1,p,q),
SC
=(2,0,-1),
CB
=(-1,1,0),
2-q=0
-1+p=0
,∴
p=1
q=2
,
n
=(1,1,2),…(6分)
又∵
OC
=(2,0,0),
∴cos<
n
,
OC
>=
n
OC
|
n
||
OC
|
=
2
6
×2
=
6
6

∴OC與平面SBC夾角的正弦值為
6
6
;…(8分)
(Ⅲ)∵SO⊥平面OABC,∴
OS
=(0,0,1)為平面OABC的法向量.
又∵平面SBC的法向量
n
=(1,1,2),
∴cos<
n
,
OS
>=
n
OS
|
n
||
OS
|
=
2
6
=
6
3

∴二面角S-BC-O的余弦值為
6
3
.…(12分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,平面α⊥平面β,A∈α,B∈β,AB與平面α所成的角為
π
4
,過A、B分別作兩平面交線的垂線,垂足為A′、B′,若AB=3A'B',則AB與平面β所成的角的正弦值是( 。
A.
14
6
B.
5
5
C.
22
6
D.
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖(1),等腰直角三角形ABC的底邊AB=4,點D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,直線PD與平面PBC所成的角為30°,求PE長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在底面是正方形的四棱錐P-ABCD中,PA=AB=1,PB=PD=
2
,點E在PD上,且PE:ED=2:1.
(1)求證:PA⊥平面ABCD;
(2)求二面角D-AC-E的余弦值;
(3)在棱PC上是否存在一點F,使得BF平面ACE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AB=BC,∠ABC=120°,Q是AC上的點,AB1平面BC1Q.
(Ⅰ)確定點Q在AC上的位置;
(Ⅱ)若QC1與平面BB1C1C所成角的正弦值為
2
4
,求二面角Q-BC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中AA1=AD=1,E為CD中點.
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點P,使得DP平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A-B1E-A1的大小為30°,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1的棱長為2,P是底面A1B1C1D1的中心,M是CD的中點,則P到平面AMD1的距離為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中點.
(Ⅰ)求證:A1B平面ADC1;
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)試問線段A1B1上是否存在點E,使AE與DC1成60°角?若存在,確定E點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在?ABCD中,=a,=b,=3,M為BC的中點,則=______(用a,b表示).

查看答案和解析>>

同步練習冊答案