分析 分別討論點(diǎn)P在正方形各邊上的位置,建立PA的關(guān)系時,得到y(tǒng)關(guān)于x的函數(shù)解析式.
解答 解:當(dāng)P在AB上時,即0≤x≤1,y=PA=x;
當(dāng)P在BC上時,即1<x≤2,y=PA=$\sqrt{A{B}^{2}+B{P}^{2}}$=$\sqrt{1+(x-1)^{2}}$;
當(dāng)P在CD上時,即2<x≤3,y=PA=$\sqrt{A{D}^{2}+D{P}^{2}}$=$\sqrt{{1}^{1}+(3-x)^{2}}$;
當(dāng)P在DA上時,即3<x≤4,y=PA=4-x.
所以y關(guān)于x的函數(shù)解析式為y=$\left\{\begin{array}{l}{x,0≤x≤1}\\{\sqrt{{x}^{2}-2x+2},1<x≤2}\\{\sqrt{{x}^{2}-6x+10},2<x≤3}\\{4-x,3<x≤4}\end{array}\right.$.
點(diǎn)評 本題的考點(diǎn)是函數(shù)解析式的求法以及函數(shù)的簡單應(yīng)用,本題要注意對點(diǎn)P進(jìn)行分類討論,從而得出一個分段函數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓或圓 | B. | 雙曲線 | C. | 橢圓 | D. | 圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 4 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com