【題目】某單位共有10名員工,他們某年的收入如下表:

員工編號

1

2

3

4

5

6

7

8

9

10

年薪(萬元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

1)求該單位員工當年年薪的平均值和中位數(shù);

2)已知員工年薪收入與工作年限成正相關關系,某員工工作第一年至第四年的年薪分別為4萬元、5.5萬元、6萬元、8.5萬元,預測該員工第六年的年薪為多少?

附:線性回歸方程中系數(shù)計算公式分別為:,其中、為樣本均值.

【答案】(1)平均值為11萬元,中位數(shù)為7萬元(2)預測該員工年后的年薪收入為10.9萬元

【解析】

1)直接利用平均數(shù)和中位數(shù)的定義計算得到答案.

2)設分別表示工作年限及相應年薪,利用公式直接計算得到回歸方程,代入數(shù)據(jù)計算得到答案.

1)平均值為 萬元,中位數(shù)為7萬元.

2)設分別表示工作年限及相應年薪,則,,

由線性回歸方程:時,

可預測該員工年后的年薪收入為10.9萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點Q是圓上的動點,點,若線段QN的垂直平分線MQ于點P.

(I)求動點P的軌跡E的方程

(II)若A是軌跡E的左頂點,過點D(-3,8)的直線l與軌跡E交于BC兩點,求證:直線AB、AC的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖.四棱柱的底面是直角梯形,,,,四邊形均為正方形.

1)證明;平面平面ABCD

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過點垂直于軸的直線與拋物線相交于兩點,拋物線兩點處的切線及直線所圍成的三角形面積為.

(1)求拋物線的方程;

(2)設是拋物線上異于原點的兩個動點,且滿足,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點為,圓 ,過作垂直于軸的直線交拋物線、兩點,且的面積為.

(1)求拋物線的方程和圓的方程;

(2)若直線均過坐標原點,且互相垂直, 交拋物線,交圓, 交拋物線,交圓,求的面積比的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中, , ,直角梯形通過直角梯形以直線為軸旋轉得到,且使得平面平面 為線段的中點, 為線段上的動點.

)求證:

)當點滿足時,求證:直線平面

)當點是線段中點時,求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點,動點滿足的軌跡為曲線.

(1)求曲線的方程;

(2)過定點作直線交曲線兩點.為坐標原點,若直線軸垂直,求面積的最大值;

(3),在軸上,是否存在一點,使直線的斜率的乘積為非零常數(shù)?若存在,求出點的坐標和這個常數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Cx2+y2+x-6y+m=0與直線lx+2y-3=0

1)若直線l與圓C沒有公共點,求m的取值范圍;

2)若直線l與圓C相交于P、Q兩點,O為原點,且OPOQ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某新上市的電子產品舉行為期一個星期(7天)的促銷活動,規(guī)定購買該電子產品可免費贈送禮品一份,隨著促銷活動的有效開展,第五天工作人員對前五天中參加活動的人數(shù)進行統(tǒng)計,y表示第x天參加該活動的人數(shù),得到統(tǒng)計表格如下,經計算得.

x

1

2

3

4

5

y

4

m

10

23

22

1)若yx具有線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;

2)預測該星期最后一天參加該活動的人數(shù)(按四舍五入取到整數(shù)).

參考公式:

,

查看答案和解析>>

同步練習冊答案