【題目】檳榔原產(chǎn)于馬來(lái)西亞,中國(guó)主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國(guó)際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解兩個(gè)少數(shù)民族班的學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查,經(jīng)他們平均每周咀嚼檳榔的顆數(shù)作為樣本,繪制成如圖所示的莖葉圖(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).

(1)你能否估計(jì)哪個(gè)班的學(xué)生平均每周咀嚼檳榔的顆數(shù)較多?

(2)在被抽取的10名學(xué)生中,從平均每周咀嚼檳榔的顆數(shù)不低于20顆的學(xué)生中隨機(jī)抽取3名學(xué)生,求抽到班學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.

【答案】(1)見解析;(2)見解析

【解析】

(1)直接利用平均數(shù)公式求解即可;(2)由題得的可能取值為1,2,3,再求對(duì)應(yīng)的概率,寫出分布列,求數(shù)學(xué)期望.

(1)班樣本數(shù)據(jù)的平均值為

由此估計(jì)班學(xué)生平均每周咀嚼檳榔的顆數(shù)為17顆,

班樣本數(shù)據(jù)的平均值為,

由此估計(jì)班學(xué)生平均每周咀嚼檳榔的顆數(shù)為19顆.

故估計(jì)班學(xué)生平均每周咀嚼檳榔的顆數(shù)較多

(2)∵平均每周咀嚼檳榔的顆數(shù)不低于20顆的學(xué)生中,班有2人,班有3人,共有5人,

的可能取值為1,2,3,

,,,

的分布列為:

1

2

3

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在極坐標(biāo)系中,為極點(diǎn),點(diǎn),點(diǎn).

(1)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,求經(jīng)過(guò),三點(diǎn)的圓的直角坐標(biāo)方程;

(2)在(1)的條件下,圓的極坐標(biāo)方程為,若圓與圓相切,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若曲線交于,兩點(diǎn),,的中點(diǎn)為,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,集合是集合S的一個(gè)含有8個(gè)元素的子集.

1)當(dāng)時(shí),設(shè)

①寫出方程的解();

②若方程至少有三組不同的解,寫出k的所有可能取值;

2)證明:對(duì)任意一個(gè)X,存在正整數(shù)k,使得方程至少有三組不同的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.

質(zhì)量指標(biāo)

頻數(shù)

一年內(nèi)所需維護(hù)次數(shù)

(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再?gòu)?/span>件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購(gòu)買該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購(gòu)買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購(gòu)買該服務(wù),或者每件都不購(gòu)買該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購(gòu)買每件產(chǎn)品時(shí)是否值得購(gòu)買這項(xiàng)維護(hù)服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

3)求證:)(說(shuō)明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體,,均垂直于平面ABC,,.

(Ⅰ)證明:平面;

(Ⅱ)求直線與平面所成的角的余弦值;

(Ⅲ)求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,,,,且.

I)求證:;

II)求證:

III)若,判斷直線與平面是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中, 平面 , , 分別為 的中點(diǎn).

(1)求證: 平面;

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案