【題目】已知{an}是遞增的等差數(shù)列,a2 , a4是方程x2﹣5x+6=0的根. (I)求{an}的通項公式;
(II)求數(shù)列{ }的前n項和.
【答案】解:(I)由x2﹣5x+6=0,解得x=2,3. 又{an}是遞增的等差數(shù)列,a2 , a4是方程x2﹣5x+6=0的根.
∴a2=2,a4=3.
∴a1+d=2,a1+3d=3,
解得a1= ,d= .
∴an= + (n﹣1)= .
(II) = .
∴數(shù)列{ }的前n項和Sn= + +…+ .
= + +…+ + .
∴ = + +…+ ﹣ = ﹣ =1﹣ .
∴Sn=2﹣
【解析】(I)由x2﹣5x+6=0,解得x=2,3.又{an}是遞增的等差數(shù)列,a2 , a4是方程x2﹣5x+6=0的根.可得a2=2,a4=3.再利用等差數(shù)列的通項公式即可得出.(II) = .利用錯位相減法、等比數(shù)列的求和公式即可得出.
【考點精析】掌握數(shù)列的前n項和是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關系.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的離心率為 ,兩個頂點分別為A(﹣a,0),B(a,0),點M(﹣1,0),且3 = ,過點M斜率為k(k≠0)的直線交橢圓E于C,D兩點,其中點C在x軸上方.
(1)求橢圓E的方程;
(2)若BC⊥CD,求k的值;
(3)記直線AD,BC的斜率分別為k1 , k2 , 求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn= nan+1 , 其中a1=1
(1)求數(shù)列{an}的通項公式;
(2)若bn= + ,數(shù)列{bn}的前n項和為Tn , 求證:Tn<2n+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通項公式;
(Ⅱ)求{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種放射性元素的原子數(shù)N隨時間t的變化規(guī)律是N=N0e﹣λt , 其中e=2.71828…為自然對數(shù)的底數(shù),N0 , λ是正的常數(shù)
(Ⅰ)當N0=e3 , λ= , t=4時,求lnN的值
(Ⅱ)把t表示原子數(shù)N的函數(shù);并求當N= , λ=時,t的值(結果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊為a,b,c,角A,B,C的大小成等差數(shù)列,向量 =(sin ,cos ),=(cos ,﹣ cos ),f(A)= ,
(1)若f(A)=﹣ ,試判斷三角形ABC的形狀;
(2)若b= ,a= ,求邊c及S△ABC .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=3sin(2x﹣ )的圖象為C,則下列結論中正確的序號是 . ①圖象C關于直線x= 對稱;
②圖象C關于點( ,0)對稱;
③函數(shù)f(x)在區(qū)間(﹣ , )內(nèi)不是單調(diào)的函數(shù);
④由y=3sin2x的圖象向右平移 個單位長度可以得到圖象C.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足 = . (Ⅰ)求C的值;
(Ⅱ)若 =2,b=4 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國際油價在某一時間內(nèi)呈現(xiàn)出正弦波動規(guī)律:P=Asin(ωπt+ )+60(美元)[t(天),A>0,ω>0],現(xiàn)采集到下列信息:最高油價80美元,當t=150(天)時達到最低油價,則ω= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com