等差數(shù)列{an}的公差為d,前n項的和為Sn,當首項a1和d變化時,a2+a8+a11是一個定值,則下列各數(shù)中也為定值的是( 。
A.S7B.S8C.S13D.S15
∵a2+a8+a11=(a1+d)+(a1+7d)+(a1+10d)=3(a1+6d)=3a7,
且a2+a8+a11是一個定值,
∴a7為定值,
又S13=
13(a1+a13
2
=13a7,
∴S13為定值.
故選C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果一個數(shù)列的各項都是實數(shù),且從第二項開始,每一項與它前一項的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(1)設數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設數(shù)列{an}是首項為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

按照等差數(shù)列的定義我們可以定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a8的值為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)如果一個數(shù)列的各項都是實數(shù),且從第二項起,每一項與它的前一項的平方差是同一個常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(Ⅰ)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,求證:該數(shù)列是常數(shù)列;
(Ⅱ)已知數(shù)列{an}是首項為2,公方差為2的等方差數(shù)列,數(shù)列{bn}的前n項和為Sn,且滿足an2=2n+1bn.若不等式2nSn>m•2n-2an2對?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果一個數(shù)列的各項均為實數(shù),且從第二項起開始,每一項的平方與它前一項的平方的差都是同一個常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫做這個數(shù)列的公方差.
(1)若數(shù)列{bn}是等方差數(shù)列,b1=1,b2=3,求b7;
(2)是否存在一個非常數(shù)數(shù)列的等差數(shù)列或等比數(shù)列,同時也是等方差數(shù)列?若存在,求出這個數(shù)列;若不存在,說明理由.
(3)若正項數(shù)列{an}是首項為2、公方差為4的等方差數(shù)列,數(shù)列{
1
an
}
的前n項和為Tn,是否存在正整數(shù)p,q,使不等式Tn
pn+q
-1
對一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若各項都是實數(shù)的數(shù)列從第二項起,每一項與它前一項的平方差是同一常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,前n項和為Tn,并且an2=T2n-1,求通項an;
(Ⅱ)若數(shù)列{an}是首項為2,公方差為2的等方差數(shù)列,數(shù)列{bn}的前n項和為Sn,且an2=2n+1bn2nSn>m•2n-2an2對?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案