【題目】已知函數(shù).

(1)求上的最值;

(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.

【答案】(1) 當(dāng)時(shí),,當(dāng)時(shí),.

(2) .

【解析】分析:,∵,∴,∴,∴上單調(diào)遞增,即可求解;(2)g′(x)=(x2+2x-1-a)ex,x1+x2=-2,a>-2,x2∈(-1,+∞),g(x2)≤t(2+x1)(ex2+1)x22-1-a)ex2≤t(2+x1))(ex2+1),-2x2ex2≤t(-x2)(ex2+1),當(dāng)x2=0時(shí),t∈R;當(dāng)x2∈(-1,0)時(shí),恒成立,當(dāng)x2∈(0,+∞)時(shí),恒成立,綜上所述.

詳解:

(1)

,∴,∴,

上單調(diào)遞增,

∴當(dāng)時(shí),

當(dāng)時(shí),/span>

(2),則

根據(jù)題意,方程有兩個(gè)不同的實(shí)根,

所以,即,且.由

可得,又

所以上式化為對(duì)任意的恒成立.

(。┊(dāng)時(shí),不等式恒成立,;

(ⅱ)當(dāng)時(shí),恒成立,即.

令函數(shù),顯然,上的增函數(shù),

所以當(dāng)時(shí),,所以.

(ⅲ)當(dāng)時(shí),恒成立,即.

由(ⅱ)得,當(dāng)時(shí),,所以.

綜上所述.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì)分會(huì)場之一落戶黔東南州黎平縣肇興侗寨,黔東南州某中學(xué)高二社會(huì)實(shí)踐小組就社區(qū)群眾春晚節(jié)目的關(guān)注度進(jìn)行了調(diào)查,隨機(jī)抽取80名群眾進(jìn)行調(diào)查,將他們的年齡分成6段: ,,,, , ,得到如圖所示的頻率分布直方圖.問:

(Ⅰ)求這80名群眾年齡的中位數(shù);

(Ⅱ)若用分層抽樣的方法從年齡在中的群眾隨機(jī)抽取6名,并從這6名群眾中選派3人外出宣傳黔東南,求選派的3名群眾年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.

(I)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表:

(II)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,平面,,是線段的中點(diǎn),.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠每月生產(chǎn)某種產(chǎn)品四件,經(jīng)檢測發(fā)現(xiàn),工廠生產(chǎn)該產(chǎn)品的合格率為,已知生產(chǎn)一件合格品能盈利100萬元,生產(chǎn)一件次品將會(huì)虧損50萬元,假設(shè)該產(chǎn)品任何兩件之間合格與否相互沒有影響.

(1)若該工廠制定了每月盈利額不低于250萬元的目標(biāo),求該工廠達(dá)到盈利目標(biāo)的概率;

(2)求工廠每月盈利額的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)的兩點(diǎn)P,Q滿足條件:①P,Q都在函數(shù)的圖像上;②PQ關(guān)于原點(diǎn)對(duì)稱,則稱P,Q是函數(shù)的一對(duì)友好點(diǎn)對(duì)(點(diǎn)對(duì)P,QQP看作同一對(duì)友好點(diǎn)對(duì).已知函數(shù)若此函數(shù)的友好點(diǎn)對(duì)有且只有一對(duì),則a的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/個(gè)

6

11

20

27

57

77

經(jīng)計(jì)算得: , ,

,線性回歸模型的殘差平方和e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng) 時(shí),函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又的導(dǎo)函數(shù).若正常數(shù) 滿足條件.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:

女性用戶

分值區(qū)間

[50,60

[6070

[70,80

[80,90

[90100]

頻數(shù)

20

40

80

50

10

男性用戶

分值區(qū)間

[50,60

[6070

[70,80

[80,90

[90,100]

頻數(shù)

45

75

90

60

30

(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評(píng)分的波動(dòng)大小(不計(jì)算具體值,給出結(jié)論即可);

(2)把評(píng)分不低于70分的用戶稱為評(píng)分良好用戶,能否有的把握認(rèn)為評(píng)分良好用戶與性別有關(guān)?

參考附表:

參考公式,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案