已知橢圓C的左、右焦點分別是F1、F2,離心率為
3
2
,過F1且垂直于x軸的直線被橢圓C截得的線段長為1;
(Ⅰ)求橢圓C的方程.
(Ⅱ)若A,B,C是橢圓上的三個點,O是坐標原點,當點B是橢圓C的右頂點,且四邊形OABC為菱形時,求此菱形的面積.
(Ⅲ)設(shè)點p是橢圓C上除長軸端點外的任一點,連接PF1、PF2,設(shè)∠F1PF2的角平分線PM交橢圓C的長軸于點M(m,0),求m的取值范圍.
(I)設(shè)橢圓的標準方程為
x2
a2
+
y2
b2
=1
(a>b>0).F1(-c,0),F(xiàn)2(c,0).
令x=-c,代入橢圓方程可得
c2
a2
+
y2
b2
=1
,解得y=±
b2
a

∵過F1且垂直于x軸的直線被橢圓C截得的線段長為1,∴
2b2
a
=1

由離心率為
3
2
,可得
c
a
=
3
2
.聯(lián)立
2b2
a
=1
c
a
=
3
2
a2=b2+c2
,解得
a=2b=2
c=
3

∴橢圓的標準方程為
x2
4
+y2=1

(II)由點B是橢圓C的右頂點,∴B(2,0).又四邊形OABC為菱形,取對角線OB的中點Q,則Q(1,0).
把x=1,代入橢圓的方程得
1
4
+y2=1
,解得y=±
3
2

取A(1,
3
2
)
C(1,-
3
2
)

∴|AC|=
3
2
=
3

∴S菱形OABC=
1
2
|AC|•|OB|
=
1
2
×
3
×2=
3

(III)由角平分線的性質(zhì)可得
|PF1|
|PF2|
=
|MF1|
|F2M|
=
m+c
c-m
=
m+
3
3
-m

由橢圓的定義可得|PF1|+|PF2|=2a=4,
4-|PF2|
|PF2|
=
3
+m
3
-m
,解得
2
|PF2|
=
3
3
-m

解得|PF2|=
2(
3
-m)
3

∵a-c<|PF2|<a+c,
∴2-
3
2(
3
-m)
3
<2+
3

解得-
3
2
<m<
3
2
,
∴m的取值范圍是(-
3
2
3
2
)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的離心率為,且曲線過點
(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點A,B,且線段AB的中點不在圓內(nèi),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
3
=1
(a
3
)的離心率e=
1
2
.直線x=t(t>0)與曲線 E交于不同的兩點M,N,以線段MN 為直徑作圓 C,圓心為 C.
(1)求橢圓E的方程;
(2)若圓C與y軸相交于不同的兩點A,B,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C的頂點在坐標原點,以坐標軸為對稱軸,且準線方程為x=-1.
(1)求拋物線C的標準方程;
(2)過拋物線C焦點的直線l交拋物線于A,B兩點,如果要同時滿足:①|(zhì)AB|≤8;②直線l與橢圓3x2+2y2=2有公共點,試確定直線l傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若AB為拋物線y2=2px(p>0)的動弦,且|AB|=a(a>2p),則AB的中點M到y(tǒng)軸的最近距離是(  )
A.
a
2
B.
p
2
C.
a+p
2
D.
a-p
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,并且直線y=x+b是拋物線C2:y2=4x的一條切線.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)過點S(0,-
1
3
)
的動直線l交橢圓C1于A、B兩點,試問:在直角坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過定點T?若存在求出T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定點A(2,0),它與拋物線y2=x上的動點P連線的中點M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知離心率為
3
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>o)過點M(2,1),O為坐標原點,平行于OM的直線l交橢圓于C不同的兩點A,B.
(1)求橢圓的C方程.
(2)證明:若直線MA,MB的斜率分別為k1、k2,求證:k1+k2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=2px(p>0)的焦點為F,直線L:2px+3y=p2。
⑴當p為何值時,焦點F到直線L的距離最大;
⑵在第⑴題下,又若拋物線與直線L相交于A、B兩點。求△ABF的面積。

查看答案和解析>>

同步練習冊答案