【題目】某公司為招聘新員工設計了一個面試方案:應聘者從6道備選題中一次性隨機抽取3道題,按題目要求獨立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應聘者甲有4道題能正確完成,2道題不能完成;應聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學期望;
(2)請分析比較甲、乙兩人誰面試通過的可能性大?
【答案】(1)詳見解析;(2)從做對題數(shù)的數(shù)學期望考查,兩人水平相當;從做對題數(shù)的方差考查,甲較穩(wěn)定;從至少完成2道題的概率考查,甲獲得面試通過的可能性大.
【解析】試題分析:(1)確定甲、乙兩人正確完成面試題數(shù)的取值,求出相應的概率,即可得到分布列,并計算其數(shù)學期望;
(2)確定Dξ<Dη,即可比較甲、乙兩人誰的面試通過的可能性大.
試題解析:
(1)設甲正確完成面試的題數(shù)為,則的取值分別為1,2,3
; ; ;
應聘者甲正確完成題數(shù)的分布列為
1 | 2 | 3 | |
設乙正確完成面試的題數(shù)為,則取值分別為0,1,2,3
,
應聘者乙正確完成題數(shù)的分布列為:
0 | 1 | 2 | 3 | |
.
(或∵∴)
(2)因為,
所以
綜上所述,從做對題數(shù)的數(shù)學期望考查,兩人水平相當;
從做對題數(shù)的方差考查,甲較穩(wěn)定;
從至少完成2道題的概率考查,甲獲得面試通過的可能性大
科目:高中數(shù)學 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;
(3)已知在被調(diào)查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥DC,AE⊥DC,BE∥AD.M、N分別是AD、BE上的點,且AM=BN,將三角形ADE沿AE折起,則下列說法正確的是 (填上所有正確說法的序號).
①不論D折至何位置(不在平面ABC內(nèi))都有MN∥平面DEC;
②不論D折至何位置都有MN⊥AE;
③不論D折至何位置(不在平面ABC內(nèi))都有MN∥AB;
④在折起過程中,一定存在某個位置,使EC⊥AD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究型學習小組調(diào)查研究學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計算的觀測值為10,則下列選項正確的是( )
A. 有99.5%的把握認為使用智能手機對學習有影響
B. 有99.5%的把握認為使用智能手機對學習無影響
C. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習有影響
D. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習無影響
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線的方程為,求實數(shù)的值;
(2)設,若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;
(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究型學習小組調(diào)查研究學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計算的觀測值為10,則下列選項正確的是( )
A. 有99.5%的把握認為使用智能手機對學習有影響
B. 有99.5%的把握認為使用智能手機對學習無影響
C. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習有影響
D. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習無影響
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市一汽車出租公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:
A車型 B車型
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
車輛數(shù) | 5 | 10 | 30 | 35 | 15 | 3 | 2 | 車輛數(shù) | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
(Ⅰ)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(Ⅲ)
(ⅰ)試寫出A,B兩種車型的出租天數(shù)的分布列及數(shù)學期望;
(ⅱ)如果兩種車輛每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛(注:兩種車型的采購價格相當),請你根據(jù)所學的統(tǒng)計知識,建議應該購買哪一種車型,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當時,有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,過拋物線上一點作拋物線的切線交軸于點,交軸于點,當時,.
(1)判斷的形狀,并求拋物線的方程;
(2)若兩點在拋物線上,且滿足,其中點,若拋物線上存在異于的點,使得經(jīng)過三點的圓和拋物線在點處有相同的切線,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com