若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式.
(2)若方程f(x)=k有3個(gè)不同的根,求實(shí)數(shù)k的取值范圍.
(1) f(x)=x3-4x+4.(2)-<k<.
解析試題分析:f′(x)=3ax2-b.
(1)由題意得解得
故所求函數(shù)的解析式為f(x)=x3-4x+4.
(2)由(1)可得f′(x)=x2-4=(x-2)(x+2),
令f′(x)=0,得x=2或x=-2.
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
因此,當(dāng)x=-2時(shí),f(x)有極大值,x (-∞,-2) -2 (-2,2) 2 (2,+∞) f′(x) + 0 - 0 + f(x) ? ? -
當(dāng)x=2時(shí),f(x)有極小值-,
所以函數(shù)f(x)=x3-4x+4的圖象大致如圖所示.
若f(x)=k有3個(gè)不同的根,則直線y=k與函數(shù)f(x)的圖象有3個(gè)交點(diǎn),所以-<k<.
考點(diǎn):本題主要考查函數(shù)的解析式,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值。
點(diǎn)評(píng):中檔題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,是導(dǎo)數(shù)的應(yīng)用中的基本問(wèn)題。本題(II)應(yīng)用導(dǎo)數(shù),通過(guò)研究函數(shù)的單調(diào)性、極值等,對(duì)函數(shù)的圖象有了充分的了解,明確了函數(shù)零點(diǎn)情況。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,().
(1)求函數(shù)的極值;
(2)已知,函數(shù), ,判斷并證明的單調(diào)性;
(3)設(shè),試比較與,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線 y = x3 + x-2 在點(diǎn) P0 處的切線 與直線4x-y-1=0平行,且點(diǎn) P0 在第三象限,
(1)求P0的坐標(biāo);
(2)若直線 , 且 l 也過(guò)切點(diǎn)P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖像在點(diǎn)處的切線方程為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)設(shè)是[)上的增函數(shù), 求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
理科(本小題14分)已知函數(shù),當(dāng)時(shí),函數(shù)取得極大值.
(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個(gè)結(jié)論證明:若,函數(shù),則對(duì)任意,都有;(Ⅲ)已知正數(shù)滿(mǎn)足求證:當(dāng),時(shí),對(duì)任意大于,且互不相等的實(shí)數(shù),都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分) 設(shè)函數(shù).
(Ⅰ)判斷能否為函數(shù)的極值點(diǎn),并說(shuō)明理由;
(Ⅱ)若存在,使得定義在上的函數(shù)在處取得最大值,求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com