【題目】已知菱形 ABCD 中,對(duì)角線 AC 與 BD 相交于一點(diǎn) O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.

(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點(diǎn) C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.

【答案】解:(Ⅰ)∵C′O⊥DB,AO⊥BD,C′O∩AO=O,∴BD⊥面 AOC',

又BD平面 ABD,∴平面 AOC'⊥平面 ABD.

(Ⅱ)如圖建立空間直角坐標(biāo)系O﹣xyz,

令A(yù)B=a,則A( ,0,0).

B(0, ,0),D(0,﹣ ,0),C′( ),

設(shè)面ADC'的法向量為

,

可取

∴直線 CD 與底面 ADC'所成角的正弦值為:


【解析】(Ⅰ)只需證明C′O⊥DB,AO⊥BD,C′O∩AO=O,BD⊥面 AOC',即可得平面 AOC'⊥平面 ABD;
(Ⅱ)如圖建立空間直角坐標(biāo)系O﹣xyz,令A(yù)B=a,則A(,0,0),B(0, ,0),D(0,﹣ ,0),C′( , 0 , ),利用向量法求解。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定和空間角的異面直線所成的角的相關(guān)知識(shí)可以得到問題的答案,需要掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】條件 ;條件 :直線 與圓 相切,則 的( )
A.充分必要條件
B.必要不充分條件
C.充分不必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口水的深度y(m)是時(shí)間t(0≤t≤24,單位:h)的函數(shù),記作y=f(t).下面是某日水深的數(shù)據(jù):

t/h

0

3

6

9

12

15

18

21

24

y/m

10

13

10

7

10

13

10

7

10

經(jīng)長期觀察,y=f(t)的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時(shí),船底離海底的距離為5m或5m以上時(shí)認(rèn)為是安全的(船舶?繒r(shí),船底只需不碰海底即可).

(1)求y與t滿足的函數(shù)關(guān)系式;

(2)某船吃水深度(船底離水面的距離)為6.5m,如果該船希望在同—天內(nèi)安全進(jìn)出港,請問該船在什么時(shí)間段能夠安全進(jìn)港?它同一天內(nèi)最多能在港內(nèi)停留多少小時(shí)?(忽略進(jìn) 出港所需的時(shí)間).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋內(nèi)裝有6個(gè)球,每個(gè)球上都記有從16的一個(gè)號(hào)碼,設(shè)號(hào)碼為n的球重克,這些球等可能地從袋里取出(不受重量、號(hào)碼的影響).

(1)如果任意取出1個(gè)球,求其重量大于號(hào)碼數(shù)的概率;

(2)如果不放回地任意取出2個(gè)球,求它們重量相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王、小張兩位同學(xué)玩投擲正四面體(每個(gè)面都為等邊三角形的正三棱錐)骰子(骰子質(zhì)地均勻,各面上的點(diǎn)數(shù)分別為)游戲,規(guī)則:小王現(xiàn)擲一枚骰子,向下的點(diǎn)數(shù)記為,小張后擲一枚骰子,向下的點(diǎn)數(shù)記為,

(1)在直角坐標(biāo)系中,以為坐標(biāo)的點(diǎn)共有幾個(gè)?試求點(diǎn)落在直線上的概率;

(2)規(guī)定:若,則小王贏,若,則小張贏,其他情況不分輸贏,試問這個(gè)游戲公平嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的外接圓半徑為1,角A,B,C的對(duì)邊分別為a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數(shù)y=f(x)g(x)的奇偶性;
(2)當(dāng)b=0時(shí),判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說明理由;
(3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓E: (a>b>0)過點(diǎn)( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點(diǎn),橢圓E內(nèi)部的動(dòng)點(diǎn)P使|PM|、|PO|、|PN|成等比數(shù)列,求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案