【題目】已知函數(shù)(),是的導(dǎo)數(shù).
(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);
(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)設(shè),,注意到在上單增,再利用零點(diǎn)存在性定理即可解決;
(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造函數(shù),求導(dǎo)討論的最值即可.
(1)由已知,,所以,
設(shè),,
當(dāng)時(shí),單調(diào)遞增,而,,且在上圖象連續(xù)
不斷.所以在上有唯一零點(diǎn),
當(dāng)時(shí),;當(dāng)時(shí),;
∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小
值點(diǎn),即在區(qū)間上存在唯一的極小值點(diǎn);
(2)設(shè),,,
∴在單調(diào)遞增,,
即,從而,
因?yàn)楹瘮?shù)在上單調(diào)遞減,
∴在上恒成立,
令,
∵,
∴,
在上單調(diào)遞減,,
當(dāng)時(shí),,則在上單調(diào)遞減,,符合題意.
當(dāng)時(shí),在上單調(diào)遞減,
所以一定存在,
當(dāng)時(shí),,在上單調(diào)遞增,
與題意不符,舍去.
綜上,的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,新型冠狀病毒(2019﹣nCoV)疫情牽動(dòng)每一個(gè)中國人的心,危難時(shí)刻全國人民眾志成城.共克時(shí)艱,為疫區(qū)助力.我國S省Q市共100家商家及個(gè)人為緩解湖北省抗疫消毒物資壓力,募捐價(jià)值百萬的物資對(duì)口輸送湖北省H市.
(1)現(xiàn)對(duì)100家商家抽取5家,其中2家來自A地,3家來自B地,從選中的這5家中,選出3家進(jìn)行調(diào)研.求選出3家中1家來自A地,2家來自B地的概率.
(2)該市一商家考慮增加先進(jìn)生產(chǎn)技術(shù)投入,該商家欲預(yù)測先進(jìn)生產(chǎn)技術(shù)投入為49千元的月產(chǎn)增量.現(xiàn)用以往的先進(jìn)技術(shù)投入xi(千元)與月產(chǎn)增量yi(千件)(i=1,2,3,…,8)的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且:,,,,,其中,,,根據(jù)所給的統(tǒng)計(jì)量,求y關(guān)于x回歸方程,并預(yù)測先進(jìn)生產(chǎn)技術(shù)投入為49千元時(shí)的月產(chǎn)增量.
附:對(duì)于一組數(shù)據(jù)(u1,v1)(u2,v2),其回歸直線v=α+βu的斜率和截距的最小二乘法估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(是自然對(duì)數(shù)的底數(shù))
(1)求的單調(diào)遞減區(qū)間;
(2)記,若,試討論在上的零點(diǎn)個(gè)數(shù).(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn).
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的普通方程為:,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,正方形的頂點(diǎn)都在上,且逆時(shí)針依次排列,點(diǎn)的極坐標(biāo)為
(1)寫出曲線的參數(shù)方程,及點(diǎn)的直角坐標(biāo);
(2)設(shè)為橢圓上的任意一點(diǎn),求:的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某購物網(wǎng)站開展一種商品的預(yù)約購買,規(guī)定每個(gè)手機(jī)號(hào)只能預(yù)約一次,預(yù)約后通過搖號(hào)的方式?jīng)Q定能否成功購買到該商品.規(guī)則如下:(。⿹u號(hào)的初始中簽率為;(ⅱ)當(dāng)中簽率不超過時(shí),可借助“好友助力”活動(dòng)增加中簽率,每邀請(qǐng)到一位好友參與“好友助力”活動(dòng)可使中簽率增加.為了使中簽率超過,則至少需要邀請(qǐng)________位好友參與到“好友助力”活動(dòng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問題的一般解法:如圖1,用對(duì)角線將長和寬分別為和的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點(diǎn),作直角三角形的內(nèi)接正方形對(duì)角線,過點(diǎn)作于點(diǎn),則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)當(dāng)時(shí),求函數(shù)圖象在處的切線方程;
(2)若對(duì)任意,不等式恒成立,求的取值范圍;
(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com