已知{an}是等差數(shù)列,其中a1=31,公差d=-8.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)數(shù)列{an}從哪一項(xiàng)開始小于0?
(3)求數(shù)列{an}前n項(xiàng)和的最大值,求出對應(yīng)n的值.
分析:(1)由題意把首項(xiàng)和公差代入等差數(shù)列的通項(xiàng)公式可得;
(2)令an=39-8n≤0,解關(guān)于n的不等式可得;
(3由求和公式可得Sn=-4n2+35n,由二次函數(shù)的性質(zhì)可得.
解答:解:(1)∵{an}是等差數(shù)列,a1=31,公差d=-8,
∴數(shù)列{an}的通項(xiàng)公式an=31-8(n-1)=39-8n;
(2)令an=39-8n≤0,解得n≥
39
8
=4
7
8

∴數(shù)列{an}第5項(xiàng)開始小于0;
(3可得前n項(xiàng)和Sn=
n(31+39-8n)
2
=-4n2+35n,
根據(jù)二次函數(shù)的性質(zhì),當(dāng)n=
35
8
Sn取到最大值,
又∵n∈N,∴n=4,
∴前n項(xiàng)和Sn的最大值是S4=-64+140=76,
點(diǎn)評:本題考查等差數(shù)列的通項(xiàng)公式和求和公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù){an}的前n項(xiàng)和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案