在△ABC中,已知∠A=45°,∠B=75°,點(diǎn)D在AB上,且CD=10.
(1)若點(diǎn)D與點(diǎn)A重合,試求線段AB的長;
(2)在下列各題中,任選一題,并寫出計(jì)算過程,求出結(jié)果.
①(解答本題,最多可得6分)若CD⊥AB,求線段AB的長;
②(解答本題,最多可得8分)若CD平分∠ACB,求線段AB的長;
③(解答本題,最多可得10分)若點(diǎn)D為線段AB的中點(diǎn),求線段AB的長.
【答案】分析:(1)先由A和B的度數(shù)求出C的度數(shù),若點(diǎn)D與點(diǎn)A重合,DC即為AC的長,故由AC,sinB及sinC的值,利用正弦定理即可求出AB的長;
(2)若選①,由A和B的度數(shù)求出∠ACB的度數(shù),根據(jù)CD與AB垂直,由A的度數(shù)求出∠ACD的度數(shù),進(jìn)而得到∠BCD的度數(shù),在直角三角形ACD中,由CD的長及tan∠ACD的值,求出AD的長,在直角三角形BCD中,由tan∠BCD及CD的長,求出BD的長,利用AD+DB即可求出AB的長;
若選②,由A和B的度數(shù)求出∠ACB的度數(shù),根據(jù)CD為角平分線,可得∠ACD=∠BCD=∠ACB,在三角形ACD中,由CD,sinA及sin∠ACD的值,利用正弦定理求出AD的長,同理在三角形BCD中,由CD,sinB及sin∠BCD的值,利用正弦定理求出BD的長,根據(jù)AD+DB=AB,即可求出AB的長;
若選③,延長CD到E,使ED=CD,連接AE及BE,由D為AB中點(diǎn),根據(jù)對角線互相平方的四邊形為平行四邊形可得ACBE為平行四邊形,得到兩組對邊相等,在三角形ACE中,根據(jù)余弦定理表示出CE2=AC2+AE2-2AC•AE•cos∠CAE,且由AE與CB平行,根據(jù)∠ACB的度數(shù)求出∠CAE的度數(shù),BC=AE,同時(shí)根據(jù)正弦定理,用sinB,sin∠ACB及AB表示出AE積AC,代入表示出的式子中,得到關(guān)于AB的方程,求出方程的解得到AB的長.
解答:解:(1)∵∠A=45°,∠B=75°,
∴∠ACB=60°,又,
由正弦定理,得;
(2)根據(jù)題意畫出相應(yīng)的圖形,如圖所示:

若選①,如圖①所示:
若CD⊥AB,∠ACD=∠ACB-∠BCD=60°-15°=45°,又∠A=45°,
∴∠ACD=∠A,
∴AD=CD=10,又∠BCD=15°,由
,

若選②,如圖②所示:
∵∠A=45°,∠B=75°,
∴∠ACB=60°,又CD為角平分線,
,
若選③,根據(jù)正弦定理得:
如圖③所示:延長CD到E,使DE=CD,連接EA、EB,
由余弦定理可得CE2=AC2+AE2-2AC•AE•cos∠CAE,
又cos∠CAE=cos(π-∠ACB)=-cos∠ACB,BC=AE,
得(2CD)2+AB2=2AC2+2BC2,

解得:
點(diǎn)評:此題考查了正弦定理,余弦定理,誘導(dǎo)公式,兩角和與差的正弦函數(shù)公式,銳角三角形函數(shù)定義及特殊角的三角函數(shù)值,第二問是多選一的問題,學(xué)生只需選擇一個(gè)解答即可.正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=
2
,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知高AN和BM所在直線方程分別為x+5y-3=0和x+y-1=0,邊AB所在直線方程x+3y-1=0,求直線BC,CA及AB邊上的高所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,則三角形一定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=1,c=3,A=120°,則a=
 

查看答案和解析>>

同步練習(xí)冊答案