平面α,β,γ兩兩相互垂直,且它們相交于一點O,P點到三個面的距離分別是1cm,2cm,3cm,則PO的長為________.

cm
分析:由題意,OP可看做長方體的對角線,其中長方體的三條棱長分別是1cm,2cm,3cm,從而可求PO的長.
解答:由題意,OP可看做長方體的對角線,其中長方體的三條棱長分別是1cm,2cm,3cm,
∴PO==cm
故答案為:cm
點評:本題考查長方體模型的構(gòu)造,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

坐標平面上滿足方程式(
x2
52
+
y2
42
)(
x2
32
-
y2
42
)=0
的點(x,y)所構(gòu)成的圖形為
(1)只有原點     
(2)橢圓及原點    
(3)兩條相異直線
(4)橢圓及雙曲線   
(5)雙曲線及原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xoy中,已知“葫蘆”曲線C由圓弧C1與圓弧C2相接而成,兩相接點M,N均在直線y=-
2
3
上.圓弧C1所在圓的圓心是坐標原點O,半徑為r1=2;圓弧C2過點A(0,-6
2
).
(Ⅰ)求圓弧C2的方程;
(Ⅱ)已知直線l:mx-y-3
2
=0與“葫蘆”曲線C交于E,F(xiàn)兩點.當|EF|=4+4
2
時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•鹽城二模)如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成.兩相接點M,N均在直線x=5上,圓弧C1的圓心是坐標原點O,半徑為r1=13; 圓弧C2過點A(29,0).
(1)求圓弧C2所在圓的方程;
(2)曲線C上是否存在點P,滿足PA=
30
PO?若存在,指出有幾個這樣的點;若不存在,請說明理由;
(3)已知直線l:x-my-14=0與曲線C交于E、F兩點,當EF=33時,求坐標原點O到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:北京市東城區(qū)2000~2001學年度第二學期形成性測試 高一數(shù)學 (五)空間兩個平面(A) 題型:013

已知M、N、P是三個相異的平面,a、b是兩條相異的直線,則下列命題中不正確的是

[  ]

A.M∩N=a,P⊥M,

B.M∥N,a與M所成的角為α,a與N所成的角為

C.M⊥N,a與M所成的角為α,a與N所成的角為

D.M∥N,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

已知M、N、P是三個相異的平面,a、b是兩條相異的直線,則下列命題中不正確的是

[  ]

A.M∩N=a,P⊥M,

B.M∥N,a與M所成的角為α,a與N所成的角為

C.M⊥N,a與M所成的角為α,a與N所成的角為

D.M∥N,

查看答案和解析>>

同步練習冊答案