如圖所示,向量的模是向量的模的t倍,的夾角為θ,那么我們稱向量經(jīng)過一次(t,θ)變換得到向量.在直角坐標平面內(nèi),設起始向量,向量經(jīng)過n-1次變換得到的向量為,其中為逆時針排列,記Ai坐標為(ai,bi)(i∈N*),則下列命題中不正確的是( )

A.
B.b3k+1-b3k=0(k∈N*
C.a(chǎn)3k+1-a3k-1=0(k∈N*
D.8(ak+4-ak+3)+(ak+1-ak)=0(k∈N*
【答案】分析:利用變換的定義,推導知的向量坐標,然后求出an,bn的表達式,然后進行計算即可.
解答:解:向量,經(jīng)過1次變換后得到,則,所以,即A正確.
則由題意知=,
所以
所以,所以B正確.
=
=,所以C正確.
故錯誤的是D.
故選D.
點評:本題是新定義題目,首先讀懂新定義的實質(zhì),轉(zhuǎn)化成我們已有的知識并解決.本題實質(zhì)考查向量的坐標運算,幾何運算,難度較大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•九江一模)已知點G是△ABC的外心,
GA
,
GB
 ,
GC
是三個單位向量,且滿足2
GA
+
AB
+
AC
=
0
,|
GA
|=|
AB
|.如圖所示,△ABC的頂點B、C分別在x軸和y軸的非負半軸上移動,O是坐標原點,則|
OA
|的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)二模)如圖所示,向量
BC
的模是向量
AB
的模的t倍,
AB
BC
的夾角為θ,那么我們稱向量
AB
經(jīng)過一次(t,θ)變換得到向量
BC
.在直角坐標平面內(nèi),設起始向量
OA1
=(4,0)
,向量
OA1
經(jīng)過n-1次(
1
2
,
3
)
變換得到的向量為
An-1An
(n∈N*,n>1)
,其中Ai,Ai+1Ai+2(i∈N*)為逆時針排列,記Ai坐標為(ai,bi)(i∈N*),則下列命題中不正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知五邊形ABCDE是邊長為1的正五邊形,在以A、B、C、D、E五點中任意兩點為始點和終點的向量中,模等于2cos36°的向量個數(shù)為(    )

A.5                B.10                 C.15               D.20

查看答案和解析>>

科目:高中數(shù)學 來源:松江區(qū)二模 題型:單選題

如圖所示,向量
BC
的模是向量
AB
的模的t倍,
AB
BC
的夾角為θ,那么我們稱向量
AB
經(jīng)過一次(t,θ)變換得到向量
BC
.在直角坐標平面內(nèi),設起始向量
OA1
=(4,0)
,向量
OA1
經(jīng)過n-1次(
1
2
3
)
變換得到的向量為
An-1An
(n∈N*,n>1)
,其中Ai,Ai+1Ai+2(i∈N*)為逆時針排列,記Ai坐標為(ai,bi)(i∈N*),則下列命題中不正確的是( 。
A.b2=
3
B.b3k+1-b3k=0(k∈N*
C.a(chǎn)3k+1-a3k-1=0(k∈N*
D.8(ak+4-ak+3)+(ak+1-ak)=0(k∈N*
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案